001     51647
005     20200423204333.0
017 _ _ |a This version is available at the following Publisher URL: http://apl.aip.org
024 7 _ |a 10.1063/1.2200761
|2 DOI
024 7 _ |a WOS:000237321600011
|2 WOS
024 7 _ |a 2128/2236
|2 Handle
037 _ _ |a PreJuSER-51647
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Anand, M.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Enhanced hard x-ray emission from microdroplet preplasma
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2006
300 _ _ |a 181111
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Applied Physics Letters
|x 0003-6951
|0 562
|v 88
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We perform a comparative study of hard x-ray emission from femtosecond laser plasmas in 15 mu m methanol microdroplets and Perspex target. The hard x-ray yield from droplet plasmas is similar or equal to 68 times more than that obtained from solid plasmas at 2x10(15) W cm(-2). A 10 ns prepulse at about 5% of the main pulse appears to be essential for hard x-ray generation from droplets. Hot electron temperature of 36 keV is measured from the droplets at 8x10(14) W cm(-2), whereas a three times higher intensity is needed to obtain similar hot electron temperatures from Perspex plasmas. Particle-in-cell simulations with very long scale-length density profiles support experimental observations. (c) 2006 American Institute of Physics.
536 _ _ |a Scientific Computing
|c P41
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK411
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Kahaly, S.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Ravindra Kumar, G.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Krishnamurthy, M.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Sandhu, A. S.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Gibbon, P.
|b 5
|u FZJ
|0 P:(DE-Juel1)132115
773 _ _ |a 10.1063/1.2200761
|g Vol. 88, p. 181111
|p 181111
|q 88<181111
|0 PERI:(DE-600)1469436-0
|t Applied physics letters
|v 88
|y 2006
|x 0003-6951
856 7 _ |u http://dx.doi.org/10.1063/1.2200761
|u http://hdl.handle.net/2128/2236
856 4 _ |u https://juser.fz-juelich.de/record/51647/files/81091.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/51647/files/81091.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/51647/files/81091.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/51647/files/81091.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:51647
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P41
|v Scientific Computing
|l Supercomputing
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK411
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k ZAM
|l Zentralinstitut für Angewandte Mathematik
|d 31.12.2007
|g ZAM
|0 I:(DE-Juel1)VDB62
|x 0
970 _ _ |a VDB:(DE-Juel1)81091
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21