000051649 001__ 51649
000051649 005__ 20200610183928.0
000051649 0247_ $$2Handle$$a2128/485
000051649 0247_ $$2URI$$a485
000051649 037__ $$aPreJuSER-51649
000051649 0881_ $$aJuel-4215
000051649 088__ $$2JUEL$$aJuel-4215
000051649 1001_ $$0P:(DE-Juel1)132152$$aKabadshow, Ivo$$b0$$eCorresponding author$$uFZJ
000051649 245__ $$aThe Fast Multipole Method - Alternative Gradient Algorithm and Parallelization
000051649 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2006
000051649 300__ $$a78 p.
000051649 3367_ $$0PUB:(DE-HGF)10$$2PUB:(DE-HGF)$$aDiploma Thesis
000051649 3367_ $$02$$2EndNote$$aThesis
000051649 3367_ $$2DataCite$$aOutput Types/Supervised Student Publication
000051649 3367_ $$2DRIVER$$amasterThesis
000051649 3367_ $$2ORCID$$aSUPERVISED_STUDENT_PUBLICATION
000051649 3367_ $$2BibTeX$$aMASTERSTHESIS
000051649 4900_ $$0PERI:(DE-600)2414853-2$$824674$$aBerichte des Forschungszentrums Jülich$$v4215$$x0944-2952
000051649 502__ $$aChemnitz, Univ., Dipl., 2006$$bDiplom (Univ.)$$cUniv. Chemnitz$$d2006
000051649 500__ $$aRecord converted from VDB: 12.11.2012
000051649 520__ $$aThis thesis describes the Fast Multipole Method (FMM). The method reduces the complexity of the Coulomb problem from O(N$^{2}$) to O(N) and is therefore called a fast Coulomb solver. The FMM is advantageous for the calculation of pairwise interactions, especially for large systems. This work is divided in three parts. The first part addresses the fundamentals of the FMM. The second part discusses the force calculation with the gradient. Two different implementations of the gradient are discussed. The last part shows the parallelization of the FMM. The procedure is described exemplarily for one pass.
000051649 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0
000051649 655_7 $$aHochschulschrift$$xDiploma Thesis (Univ.)
000051649 8564_ $$uhttps://juser.fz-juelich.de/record/51649/files/Juel_4215_Kabadshow.pdf$$yOpenAccess
000051649 909CO $$ooai:juser.fz-juelich.de:51649$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000051649 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000051649 9141_ $$y2006
000051649 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0
000051649 9201_ $$0I:(DE-Juel1)VDB62$$d31.12.2007$$gZAM$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000051649 970__ $$aVDB:(DE-Juel1)81093
000051649 980__ $$aVDB
000051649 980__ $$aJUWEL
000051649 980__ $$aConvertedRecord
000051649 980__ $$adiploma
000051649 980__ $$aI:(DE-Juel1)JSC-20090406
000051649 980__ $$aUNRESTRICTED
000051649 980__ $$aFullTexts
000051649 9801_ $$aFullTexts
000051649 981__ $$aI:(DE-Juel1)JSC-20090406