
Berichte des Forschungszentrums Jülich 4215

The Fast Multipole Method -
Alternative Gradient Algorithm and
Parallelization

Ivo Kabadshow

Berichte des Forschungszentrums Jülich ; 4215
ISSN 0944-2952
Zentralinstitut für Angewandte Mathematik Jül-4215

Zu beziehen durch: Forschungszentrum Jülich GmbH · Zentralbibliothek, Verlag
D-52425 Jülich · Bundesrepublik Deutschland
� 02461 61-5220 · Telefax: 02461 61-6103 · e-mail : zb-publikation@fz-juelich.de

Aufgabenstellung

Im Rahmen dieser Diplomarbeit soll das im HPC-Chem Projekt entwickelte FMM-Pro-

gramm um die Berechnung des Gradienten erweitert werden. Durch die damit mögliche

Berechnung der Kräfte kann das FMM-Programm als eigenständiges Modul in Molekular-

dynamikrechnungen eingesetzt werden. In diesem Zusammenhang sind die mathematischen

Grundlagen des FMM-Gradienten zu erarbeiten. Es sind insbesondere Grenzwerte unbe-

stimmter Ausdrücke auszuwerten, die sich aus den Ableitungen der Multipolmomente erge-

ben. Auf der Grundlage des ProgrammpaketsGlobal Arrayssoll eine massiv parallele Ver-

sion des FMM-Programms entwickelt werden. Globale Datenverarbeitung und einseitige

Kommunikation sind auf die Struktur der FMM abzubilden.

Acknowledgements

I would like to express my gratitude to the following people for there support and assistance

in developing this diploma thesis.

I am deeply indebted to my supervisor Dr. Dachsel whose suggestions and encouragement

helped me in all the time of research. I am also much obliged for the encouragement from

Prof. Radehaus who supported me throughout the last five years of my studies in Chemnitz

and made it possible to write this thesis in cooperation with the Research Centre Juelich.

Special thanks go to my colleague Michael Hofmann for numerous discussions and hints on

parallelization.

I am grateful to all those who helped solving the occurring small and large problems,

especially all people at the institute of applied mathematics at Research Centre Juelich.

Abstract

This thesis describes the Fast Multipole Method (FMM). The method reduces the complexity

of the Coulomb problem fromO(N2) to O(N) and is therefore called a fast Coulomb solver.

The FMM is advantageous for the calculation of pairwise interactions, especially for large

systems. This work is divided in three parts. The first part addresses the fundamentals of

the FMM. The second part discusses the force calculation with the gradient. Two different

implementations of the gradient are discussed. The last part shows the parallelization of the

FMM. The procedure is described exemplarily for one pass.

Zusammenfassung

Diese Diplomarbeit befasst sich mit der schnellen Multipolmethode (engl. FMM). Die Kom-

plexität des Coulomb Problems lässt sich mit Hilfe der FMM vonO(N2) auf O(N) re-

duzieren. Die FMM zählt damit zu den schnellen Coulomb Lösern. Für die Berechnung

der Coulomb Energie von großen Teilchensystemen besitzt die Multipolmethode durch ihre

lineare Komplexität Vorteile gegenüber der direkten Berechnung. Die Arbeit behandelt drei

Gebiete. Im ersten Teil werden die Grundlagen der FMM erläutert. Im zweiten Teil wird

die Berechnung des FMM Gradienten vorgestellt. Dabei werden zwei Möglichkeiten der

Berechnung aufgezeigt. Der letzte Teil der Arbeit befasst sich mit der Parallelisierung der

FMM. Dabei wird das Vorgehen exemplarisch an einem Teilschritt der FMM erläutert.

Contents

1 Introduction 1

2 The Fast Multipole Method (FMM) 5

2.1 FMM Fundamentals . 5

2.1.1 Expansion of Charge-Charge Interactions 5

2.1.2 Pass 1: Calculation and Shifting of Multipole Moments 8

2.1.3 Pass 2: Transforming Multipole Moments 9

2.1.4 Pass 3: Shifting Taylor-like Coefficients 10

2.1.5 Pass 4: Calculating the Far Field Energy 11

2.1.6 Pass 5: Calculating the Near Field Energy 12

2.1.7 Translation Operators . 12

2.2 Fractional Tiers . 15

2.3 Error Estimations . 15

2.4 Rotation-based FMM . 17

2.5 Crossover Point . 19

2.6 Test Calculations . 20

2.6.1 O(N) Scaling with Number of ParticlesN 20

2.6.2 O(L3) Scaling with Multipole LengthL 21

3 FMM Gradient 25

3.1 Gradient Fundamentals . 26

3.2 Standard FMM Gradient . 27

3.2.1 Standard Far Field Gradient . 27

3.2.2 Standard Near Field Gradient . 28

3.3 Alternative Far Field Gradient . 30

3.4 Implementation Details . 31

3.5 Comparing Both Algorithms . 33

i

4 Parallelization of the FMM 37

4.1 Programming Models . 37

4.1.1 Message Passing . 37

4.1.2 Distributed Shared Memory (DSM) 38

4.1.3 Design . 38

4.2 Parallel Programming Paradigms . 39

4.2.1 Task-Farming: Master/Slave . 39

4.2.2 SPMD . 40

4.2.3 Divide and Conquer . 40

4.3 Implementation . 41

4.4 The Global Arrays (GA) Toolkit . 42

4.4.1 Description . 42

4.4.2 Relevant GA Operations . 43

4.5 Sequential FMM Data Layout . 45

4.6 Parallel FMM Data Layout . 46

4.6.1 Space-filling Curves . 46

4.6.2 Data Distribution . 48

4.6.3 Parallel Subroutines . 49

4.7 Locality & Global Operations . 51

4.8 Load-Balancing . 54

4.8.1 Static Load-Balancing . 55

4.8.2 Dynamic Load-Balancing . 55

4.9 Parallel Scaling . 57

5 Summary and Outlook 59

Bibliography 61

A Computational Resources 65

A.1 Hardware . 65

A.2 Software . 66

ii

List of Figures

1.1 N-body problem: application and progress 3

2.1 Interaction of distant and local particles 6

2.2 Expansion of inverse distance . 6

2.3 Expansion of local particles in multipole moments 7

2.4 Formation of multipole moments in a box 8

2.5 Neighbor criterion . 9

2.6 FMM pass 1 . 9

2.7 FMM pass 2 . 10

2.8 FMM pass 3 . 11

2.9 FMM pass 4 . 11

2.10 FMM pass 5 . 13

2.11 FMM operators . 14

2.12 Fractional tiers . 16

2.13 FMM parameters . 17

2.14 Rotation-based FMM . 23

3.1 Gradient scheme . 25

3.2 Spherical coordinates . 26

3.3 Standard FMM far field gradient . 28

3.4 Alternative FMM far field gradient . 31

3.5 Multipole and Taylor-like expansion memory occupancy 33

3.6 Gradient algorithms: scaling and error . 35

4.1 Parallel programming paradigms . 41

4.2 Global Array data distribution . 43

4.3 Space-filling curves . 48

iii

4.4 Morton order for partitioning and neighbor search 49

4.5 Distributed box vector . 50

4.6 Modified box vector . 50

4.7 Parallel design of modified box vector . 51

4.8 Sequential pass 5 . 52

4.9 Prefetching overlapping boxes . 53

4.10 Direct memory access . 53

4.11 Parallel pass 5 . 54

4.12 Particle distributions . 55

4.13 Load balancing . 57

4.14 Parallel scaling . 58

iv

List of Tables

1.1 Fast summation algorithms . 2

2.1 Crossover points . 20

2.2 Scaling concerning the number of particles 21

2.3 Scaling concerning the length of the multipole expansion 22

3.1 Performance monitoring for gradient algorithms 34

4.1 Computation time of the FMM passes . 46

4.2 Memory requirements of the sequential FMM 47

4.3 Bit mixing scheme . 48

4.4 Shared global information for distributed box vector 52

4.5 Global Arrays memory access . 54

v

vi

1 Introduction

There are two ways to understand microscopic coherences in our macroscopic world. Firstly,

it is possible to carry out experiments by using adequate equipment. Secondly, we could use

a theoretical model and a computer simulation to obtain the microscopic properties of a

system. Such simulations, especially particle simulations, have a broad range of application,

namely in chemistry, biophysics or astrophysics. Computations on the molecular level can

provide a picture of the molecular structure or dynamics. Thereby, computer simulations

bridge scientific theories to practical experiments. Theories can be tested against the result

from experiments. Another goal is to obtain results of molecular properties without running

expensive experiments.

A central problem in computational physics is the simulation of particle systems. When

the interaction between these particles is described using an electrostatic or gravitational

potential, the accurate solution poses several problems. Firstly, for a straightforward compu-

tation of all mutual interactions ofN particles,12N(N −1) pairs need to be considered [37].

This strategy has a complexity ofO(N2).
Secondly, simulation usually runs over several thousand time steps. That implies theN-

body system has to be solved over and over again. Obviously, the limiting part comes from

the pairwise interaction that bounds the simulation to only small system size. This fact

complicates the calculation of large and more realistic systems demanded by many scientific

applications [5]. Even today’s computer power is not sufficient to tackle problems with sizes

larger than hundreds of thousands of particles.

To avoid the computation of all pairwise interactions and reduce the overall complexity

of order O(N2) many solutions have been proposed. A first approach could be a simple

truncation of the infinite potential to a feasible level. The computation time decreases and

complexity reduces toO(N) [7], however the calculation suffers from truncation errors [24].

Thus, a simple truncation method is ineligible when the error must be bound to a certain

value.

Another approach is building special purpose hardware, such as the Grape project [12]

(Gravity pipe). Rapid evaluation is achieved by parallel computation on more than 1000

1

1 INTRODUCTION

Year Method Complexity Reference

1820 direct summation O(N2) Laplace

1921 Ewald summation O(N3/2) Ewald [15]

1977 Multigrid summation O(N) Brandt [6]

1986 Barnes-Hut treecode O(N logN) Barnes, Hut [3]

1987 Fast multipole method O(N) Greengard, Rokhlin [19]

1988 Particle mesh O(N logN) Hockney, Eastwood [21]

1993 Particle mesh Ewald O(N logN) Darden [11]

Table 1.1: Historical development of fast summation algorithms.

processors. Nevertheless, the algorithmic bottleneck of quadratic runtime remains.

To overcome this limitation, there is a need for special algorithms. Cutting the potential is

suitable for short-range interactions only, it does not hold for long-range interactions looming

in electrostatics or gravity. Historically, significant developments started about 40 years ago.

With the advent of particle-mesh methods, orders of magnitude more particles could be

handled easily. For evenly distributed particles and low precision, this method is efficient

and accomplishes larger particle numbers. Unfortunately for clustered systems (e.g. star

clusters), this method lacks performance [17]. After 1990, algorithms called "hierarchical

codes" or "tree codes" were proposed. These algorithms were developed to handle such non

uniform distributions of particles. The basic idea behind these methods is to group distant

particles and compute only the interaction between these groups. The amount of time needed

for this kind of computation reduces toO(N log(N)). Finally, the Fast Multipole Method

developed by Greengard and Rokhlin [19] can be seen as a closely related scheme reducing

the complexity further toO(N) [34].

The FMM has been called one of the ten most significant algorithms in scientific compu-

tation discovered in the 20th century [14].

2

Molecular Dynamics

Time Dependent Problems

Stellar Systems

Fluid Dynamics

Plasma Physics

(a) FMM applications

Rapid Evaluation

Tree Codes FMM

Hierarchical SolversField Methods

(b) Methodical classification

Figure 1.1: (a) The numericalN-body problem has many applications. The computed inter-
actions are used to obtain a force field or a velocity field (fluid dynamics). If the problem is
static the simulation is used to obtain the potential energy (Coulomb energy) of the system.
Figure (b) shows the historical progress in the solution of theN-body problem of gravity.
Field methods were established in the seventies. Hierarchical solvers were developed for the
first time in the eighties [17].

3

4

2 The Fast Multipole Method (FMM)

2.1 FMM Fundamentals

Firstly, consider the electrostatic case, where a set ofN particles interact with each other. In

this case the total Coulomb energyE is given by:

E =
N−1

∑
i=1

N

∑
j=i+1

qi qj

rij
. (2.1)

The total energy is formed by taking the sum of all pairwise interactions. The charge of a

particle is denoted byqi , and the position of the particle is defined byr i . Accordingly, rij

defines the distance between two particles with chargesqi andqj. The quadratic complexity

of the direct summation is obtained, because each inverse distance pair 1/rij contributes to

the sum. A fast algorithm relies on substituting certain parts of the direct summation by

a series expansion (See Figure 2.1). Instead of calculating "distant" particle interactions

individually the charges are treated as a cluster, i.e. a single pseudo charge [4].

2.1.1 Expansion of Charge-Charge Interactions

By help of algebraic transformations, it is possible to factorize the inverse distance 1/rij.

According to [38], the system has to be transformed to spherical coordinates. Figure 2.2

illustrates this procedure for two charges. The first charge is located at a pointR with spher-

ical coordinates(r,θ,φ). The second charge is locate at pointA with spherical coordinates

(a,α,�). Thus, spherical momentsωlm of a multipole expansion and coefficientsµlm of a

Taylor-like expansion can be defined.

The potential in three dimensions can be defined as follows:

Φ(a) =
q

|r −a|
, (2.2)

5

2 THE FAST MULTIPOLE METHOD (FMM)

local charges

distant charge

(a) Individual interaction

net charge

distant charge

(b) Grouped interaction

Figure 2.1: (a) Local charges inside the disk interact individually with a distant charge. How-
ever the contribution from one particle within the disk interacting with the distant particle is
almost equal to contributions from other particles in the disk concerning the distant particle.
(b) All particles within the disk are approximated by a pseudo particle at disk center. Now,
only the pseudo particle interacts with the distant charge.

r(r, θ, ϕ)
γ

0

A
R

a(a, α, �)

Figure 2.2: PointsA andR, with angleγ subtended betweenOA andOR.

where|r −a| is the distance between a particle at pointR with chargeq and the evaluation

pointA. In terms of an infinite sum over Legendre polynomials the potential can be expressed

as follows:

Φ(a) =
q

|r −a|
= q

∞

∑
l=0

a l

r l+1Pl(cosγ), (a < r). (2.3)

Unfortunately this equation is not suitable yet, because the angleγ depends on both coordi-

nates. In terms of spherical harmonics the Legendre polynomial can be factorized using the

Addition Theorem:

Pl(cosγ) =
l

∑
m=−l

Y−m
l (α,�)Y m

l (θ,φ). (2.4)

Now, the inverse distance is completely factorized. It is possible to split the equation into

parts that only depend on(a,α,�) and parts only depend on(r,θ,φ). This transformation is

essential to reduce the complexity fromO(N2) to O(N logN). The spherical harmonics can

6

2.1 FMM FUNDAMENTALS

r(r, θ, ϕ)a(a, α, �)

O

R
Φa(r)

r > a
A

Figure 2.3: The potential at pointR of particles in a sphere within radiusa can be expressed
by a multipole expansion around 0.

be expressed in terms of associated Legendre polynomials:

Y m
l (α,�) =

√
(l−|m|)!
(n + |m|)!

Plm(cosα)eim�, (2.5)

Y m
l (θ,φ) =

√
(l−|m|)!
(n + |m|)!

Plm(cosθ)eimφ, (2.6)

wherei2 =−1. Further transformations of spherical harmonics finally lead to:

1
|r −a|

=
∞

∑
l=0

m=l

∑
m=−l

(l−m)!
(l +m)!

a l

r l+1Plm(cosα)Plm(cosθ)e−im(�−φ). (2.7)

Equation (2.7) can be divided into two parts, a local part with its multipole expansion

ωlm (See Figure 2.3) and a distant part with its Taylor-like expansionµlm . Thus, chargeless

momentsOlm of a multipole expansion are defined to be:

Olm(a,α,�) = a l 1
(l +m)!

Plm(cosα)e−im�. (2.8)

The corresponding Taylor-like expansions can be formulated as:

Mlm(r,θ,φ) =
1

r l+1(l−m)!Plm(cosθ)eimφ. (2.9)

The coefficients of a multipole expansion including charges are denoted asωlm = qOlm , the

7

2 THE FAST MULTIPOLE METHOD (FMM)

a

utilized particles

neglected particles
neighbor

box
neighbor

box

Figure 2.4: Formation of multipoles in each box. All particles within radiusa and within the
same box are expanded into multipoles of the given box. Particles within the sphere but not
in the considered box are neglected.

coefficients of a Taylor-like expansion including charges are denoted asµlm = qMlm . Now,

the inverse distance is given by:

1
|r −a|

=
∞

∑
l=0

m=l

∑
m=−l

Olm(a)Mlm(r) . (2.10)

2.1.2 Pass 1: Calculation and Shifting of Multipole Moments

In order to calculate the Coulomb energy and Coulomb forces the input particle positions

and particle charges are considered in a simulation box of finite size [38]. For simplicity

and numerical stability this simulation box is scaled into the computation box with range

[0..1,0..1,0..1]. To apply the expansion described above, the computation space has to be

divided in a tree-like manner. In the first step, the computation box is divided into eight child

boxes of equal size. Thus, the main box is divided half along each coordinate axis (Figure

2.13 on page 17). The child boxes extend across a subset of the entire computation box. The

particles can be sorted into the generated child boxes. Then each child box is subdivided

again recursively. The goal of this subdivision is to keep the particles at the lowest level

independent of the total number of particles. Otherwise, the algorithm would not have a

complexity ofO(N) [38]. On each new level, the particles are sorted into the child boxes

again. The spatial partitioning proceeds until a certain number of subdivisions is obtained.

Now at the lowest level the corresponding multipole expansion can be computed for each

box. To minimize computational overhead, all empty boxes are pruned. Therefore, only

multipole moments of non-empty boxes are stored. After setting up all multipole expansions

at the lowest level, these expansions are shifted up the tree via the operatorA (See section

8

2.1 FMM FUNDAMENTALS

neighbor boxes

separated boxes

level 3level 2

Figure 2.5: Left: Tree level 2 – All boxes shown are neighbor boxes. It is not possible to
choose two boxes such that another box is in between. Right: Tree level 3 – There exist
separated boxes (ws= 1). It is possible to place two gray dots such that at least one box is
in between.

ω ω ω ω ω ω ωω

ωωωω

(a) Pass 1: Shifting ofωlm (b) Pass 1 – 2D view

Figure 2.6: Pass 1: Formation and shift of multipole moments. Arrows denote shifts from
the center of a child box to the center of the parent box.

2.1.7). This procedure is repeated until the third tree-level is reached (See Figure 2.6). This

is the highest level where mutually independent boxes exist.

2.1.3 Pass 2: Transforming Multipole Moments

As the expansion of the potential converges forr > a only, neighboring boxes cannot inter-

act via multipoles. Figure 2.4 illustrates this scheme. Gray-shaded charges are encircled by

radiusa but do not share the same box. Therefore, a separation criterion has to be defined.

The criterionws is called "well separateness" and influences the convergence of the expan-

sion and thus the accuracy of the calculation. It can take any value from 1 to the number of

boxesn in one direction. Forws = 1, only nearest neighbor boxes are skipped, forws = 2,

also next-nearest neighbor boxes are skipped, and so on. For large values ofws, the FMM

behaves like the direct summation, because no box can interact via expansions. On a given

9

2 THE FAST MULTIPOLE METHOD (FMM)

ω ω ωω ω ω ω ω

ω ω ω ω

(a) Pass 2: Transform remoteωlm to localµlm (b) Pass 2 – 2D view

Figure 2.7: Pass 2: Multipole interaction. Only well-separated boxes on each level interact.

level, e.g. the lowest level, only boxes interact which are well separated but their parents are

not. This fact leads to significant speedup, because more distant particles do not interact on

this level. After evaluating all transformations at one level, the transformation proceeds to

the next higher level until no separated boxes remain (See Figure 2.7). On level two all boxes

are non-separated (See Figure 2.5) and therefore cannot interact via multipoles. Forws = 1

or ws = 2 this would be level 3. Forws = 3, this procedure can be performed until level 4

is reached. Each transformation converts the distant multipole expansion around the distant

origin to a local Taylor-like expansion. All Taylor-like expansions around the same origin

can be summed. This scheme allows only a constant number of boxes, namely boxes that

meet the interaction rule, to be transformed. OperatorB is used to perform theωlm → µlm

transformation.

2.1.4 Pass 3: Shifting Taylor-like Coefficients

In pass 2 only boxes well-separated from each other interact. In pass 3 the neglected in-

formation from all boxes which did not interact, is shifted top-down from the higher levels

to lower levels, beginning at level 3 (ws= 1 or ws = 2). In result, each lowest level box

contains all information from all remote boxes. This shift is carried out via the operatorC.

The information is shifted from parents to children. This pass is repeatedly performed until

the lowest level is reached (See Figure 2.8).

10

2.1 FMM FUNDAMENTALS

µ

µ

µ µ µ

µ µµµµµµ

(a) Pass 3: Shifting ofµlm (b) Pass 3 – 2D view

Figure 2.8: Pass 3: Taylor-like expansions are shifted down the tree to complete the neglected
interactions from more distant particles. Arrows denote shifts from the center of a parent box
to the center of the child box.

ωµ ωµ ωµ ωµ ωµ ωµ ωµ ωµ

(a) Pass 4: Lowest level boxes containωlm andµlm .

ωµ ωµ ωµ ωµ ωµ ωµ ωµ ωµ

ωµ ωµ ωµ ωµ ωµ ωµ ωµ ωµ

ωµ ωµ ωµ ωµ ωµ ωµ ωµ ωµ

ωµ ωµ ωµ ωµ ωµ ωµ ωµ ωµ

ωµ ωµ ωµ ωµ ωµ ωµ ωµ ωµ

ωµ ωµ ωµ ωµ ωµ ωµ ωµ ωµ

ωµ ωµ ωµ ωµ ωµ ωµ ωµ ωµ

ωµ ωµ ωµ ωµ ωµ ωµ ωµ ωµ

(b) Pass 4 – 2D view

Figure 2.9: Pass 4: Calculation of the far field energy in each lowest level box.

2.1.5 Pass 4: Calculating the Far Field Energy

After computing the previous three passes, all lowest level boxes now contain the necessary

information to calculate the far field energy. Every box keeps a multipole expansionωlm

of the contained chargesqi and a Taylor-like expansion from all distant boxes, respectively

charges (See Figure 2.9). As the multipole and Taylor-like expansion both have the same

center, they can be summed up in each box. Finally summing up all the results from all

boxes, the far field part of the Coulomb energy becomes:

EFF = ∑
ibox

L

∑
l=0

l

∑
m=−l

ωlmµlm . (2.11)

11

2 THE FAST MULTIPOLE METHOD (FMM)

2.1.6 Pass 5: Calculating the Near Field Energy

In pass 5 all interactions, which cannot be computed via the far field approach, are calculated.

All non-separated boxes around boxibox and the boxibox itself are taken into account. All

particles in these boxes interact directly (See Figure 2.10). Contributions to the near field

energy can be split up in intra-box and box-box interactions.

ENF1 = ∑
ibox

Nibox−1

∑
i=1

Nibox

∑
j=i+1

qi qj

rij
, (2.12)

Equation (2.12) shows how to calculate the interaction energy for all particles contained in

box ibox.

ENF2 = ∑
ibox

∑
jbox

Nibox

∑
i=1

Njbox

∑
j=1

qi qj

rij
, (2.13)

Equation (2.13) shows how all pairwise interactions between boxibox and its neighbor boxes

jbox defined by the separation criterionws are calculated. This pass has to be performed for

all non-empty boxes at the lowest level. The far field partEFF is obtained in pass 4:

EFF = ∑
ibox

L

∑
l=0

l

∑
m=−l

ωlmµlm . (2.14)

The total Coulomb energy can be obtained by summing up all near field and far field parts:

E = ENF1 +ENF2 +EFF . (2.15)

2.1.7 Translation Operators

To understand the computational scheme of the FMM some operators have to be defined.

The algorithm needs to form multipole expansions, translate these expansions, construct lo-

cal expansions from distant particles and translate those local expansions. These operators

are also essential for linear scaling [38]. The use of these operators is described in Sections

2.1.2 to 2.1.5.

12

2.1 FMM FUNDAMENTALS

(a) Pass 5: Interaction on the lowest level of the FMM tree.

jbox

ibox

(b) Pass 5 – 2D view

Figure 2.10: Pass 5: Final step – all interactions not eligible for expansion are calculated
directly.

Operator A: Shifting

To shift a multipole expansion from a child box center to its parent box operator A is used.

It shifts multipole expansions arounda to a new center aroundb. Within the algorithm, the

infinite sum in Equation (2.16) is truncated toL terms. Therefore a truncation error occurs.

We can define the shifted multipole expansionωlm by means of the formula:

ωlm(a+b) =
∞

∑
j=0

j

∑
k=−j

Alm
jk (b)ωjk(a), (2.16)

with

Alm
jk = Ol−j,m−k. (2.17)

Operator B: Transformation

To transform a local multipole expansion arounda to a local Taylor-like expansion around

(b−a) operator B is applied. Numerical calculations of operatorB induce truncation errors

as well, because onlyL terms are considered for the sum. The transformed Taylor-like

expansion can be represented as:

µlm(b−a) =
∞

∑
j=0

j

∑
k=−j

Blm
jk (b)ωjk(a), (2.18)

with

Blm
jk = Mj+l,k+m . (2.19)

13

2 THE FAST MULTIPOLE METHOD (FMM)

(a) FMM Operator A (b) FMM Operator B (c) FMM Operator C

Figure 2.11: (a) OperatorA implements translations up the tree. (b) OperatorB implements
a transformation from a multipole expansion to a local Taylor-like expansion. (c) Operator
C implements translations down the tree.

Operator C: Shifting

The operatorC shifts theL-term local expansions from a parent box to its eight children

boxes’ centers. A Taylor-like expansion located in a box aroundr is shifted to its new

position(r −b). On the contrary to operatorA and operatorB, operatorC has no associated

truncation error. Thus, the shift of local Taylor-like expansions comes without incurring

additional errors. The shifted Taylor-like expansion is defined by:

µlm(r −b) =
∞

∑
j=l

j

∑
k=−j

Clm
jk (b)µjk(r) , (2.20)

with

Clm
jk = Oj−l,k−m . (2.21)

Omitting operatorA and C increases complexity toO(N logN). Obviously all operators

induce a complexity ofO(L4). Especially high accuracy calculations are slowed down. To

overcome this problem, improvements to the operators have been made. (See section 2.4).

14

2.2 FRACTIONAL TIERS

2.2 Fractional Tiers

To achieve linear scaling, the number of particles at the lowest level boxes must be inde-

pendent from the total number of particles. Considering a homogeneous particle system, a

certain number of particles reside in each lowest level box. When adding a new charge to the

system the total number of boxes should not change, since the number of particles in lowest

level boxes must be independent from the total number of particles. Therefore, every added

particle contributes a linear amount of computation time to the far field part and quadratical

amount to the near field part. The scaling with particle number becomes locally quadratical.

Introducing a new level to the FMM tree the number of boxes increase by a factor of eight.

Thus, the tree depth is kept constant until the number of particles increases by a factor of

eight. Figure 2.12 illustrates the fact.

To overcome the restriction that the number of boxes has to be a power of eight and

achieve arbitrary numbers of lowest level boxes, the entire simulation box can be scaled.

Thereby, a better balance between far field and near field calculations can be achieved. The

scaling factor determines the number of particles per box. It can take values from 0.5 to 1.0.

Compressing the system to half if its original size along each axis causes the tree level to

increase by one. Now there are eight times more boxes, but only 1/8 of all boxes contain

particles. Varying the scaling factor between the limits 0.5 and 1.0 leads to arbitrary box

numbers [39]. The locally quadratical scaling is improved. Computation time now is near to

the lower bound (See Figure 2.12a).

2.3 Error Estimations

The precision of the FMM is knowna priori, and a tolerance parameter is defined in terms

of this prescribed precision.

The FMM depends on three parameters, namely the tree depthD, the separation criterion

ws and the length of the multipole expansionL (See Figure 2.13). These parameters strongly

affect the accuracy and running time of the FMM. Admittedly, the user is only interested in

the total Coulomb energyE and the forces acting on each particle to a given precision, but

not in determining optimal FMM parameters. Hence, it is impractical to leave the choice

of a proper parameter set to the user. Since all parameters have much influence on both

the computation time and the desirable precision, it would be preferable to have an analytic

expression that identifies the optimal parameter set. Unfortunately there is no appropriate

15

2 THE FAST MULTIPOLE METHOD (FMM)

lower bound

upper bound

direct

co
m

pu
ta

tio
n

tim
e

number of particles

(a) Locally quadratical scaling

level 2 level 3

(b) Compression

Figure 2.12: Locally quadratical scaling. Eight times more particles introduce a new tier.
The introduction of an additional tier and the compression of the simulation box to 50% of
the original size does not change the number of non-empty boxes.

method known.

However this implementation of the FMM allows the evaluation of optimal parameters

automatically at runtime. The particle system could be of any kind of distribution, a homo-

geneous one or non-homogeneous one.

The parametersws, D, andL can be optimized such that the computation timet achieves

a minimum and a pre-defined error boundε is obtained, i.e. formally:

∂t

∂ws
= 0,

∂t

∂D
= 0,

∂t

∂L
= 0, (2.22)

and,

∆E(D,L,ws)≤ ε . (2.23)

The separation criterionws and the multipole lengthL can take positive integer values only.

The depth of the FMM tree can also take fractional values as described in section 2.2. The

determination of the optimal parameter set takes only little extra computation time in this

implementation. In contrast to improper chosen parameters, which can lead to an order of

magnitude higher computation time this is worthwhile. There also exist other implementa-

tions that optimize the FMM parameters [9], but interestingly all references yield different

optimal parameters.

16

2.4 ROTATION-BASED FMM

ws=3

ws=2

ws=1

ws=4

ws=5

(a) Separation criterionws

1 2

3 4

(b) FMM tree depthD

ω00

ω10,ω11

ω20,ω21,ω22

ω30,ω31,ω32,ω33

...

ωl,m−2,ωl,m−1,ωl,m

L=0:
L=1:
L=2:

L=l:

L=3:

(c) Multipole lengthL

Figure 2.13: The FMM contains three parameters: (a) A separation criterionws, (b) a certain
tree depthD and (c) a multipole expansion with lengthL.

2.4 Rotation-based FMM

The operators introduced in section 2.1.7 require a complexity ofO(L4), with multipole

lengthL for arbitrary angles. To achieve reasonable efficiency at high precision this is a

major obstacle. There are a number of schemes offering reduced complexity.

Some groups overcome this problem by shortening the length of the multipole expansion

for boxes situated very far from the interacting one. Unfortunately, these approaches do not

guarantee the error bound [31]. Using the full operatorsO:

Olm(a,α,�) =
1

(l +m)!
a lPlm(cosα)e−im�, (2.24)

and full operatorM :

Mlm(r,θ,φ) = (l−m)!
1

r l+1Plm(cosθ)eimφ. (2.25)

it can be easily shown that a translation in thez direction (α= θ = 0, � = φ = 0) only

requiresL3 work. Thus, translations along thez-axis are less expensive. The operatorO

degenerates to:

Olm(a,0,0) =
1
l!

a lδm0. (2.26)

17

2 THE FAST MULTIPOLE METHOD (FMM)

The operatorM degenerates to:

Mlm(r,0,0) = l!
1

r l+1δm0. (2.27)

with δmn defined as:

δmn

{
∀ m 6= n → 0

m = n → 1
(2.28)

To take advantage of the reduced operator costs, the following scheme has to be followed.

The standard FMM could be modified such that all translations require the reduced costs:

1. Rotate the coordinate system (L3 operations) such that the vector connecting the source

box and the target box lies parallel to thez-axis.

2. Shift the expansion parallel to thez-axis (L3 operations).

3. Rotate back to the original coordinate system (L3 operations).

The problem is reduced from three dimensions to one dimension by this rotations (See Figure

2.14). Both operatorsOlm andMlm are necessary for the three FMM operatorsA, B andC.

Using Equations (2.26) and (2.27), the operators take a simpler form. Operator A is then

given by:

Alm
jk (b) =

1
(l− j + |m−k|)!

bl−jδm−k,0, (2.29)

operator B takes the form:

Blm
jk (b) = (l + j−|m +k|)! 1

bj+l+1δm+k,0, (2.30)

and operator C can be formulated as:

Clm
jk (b) =

1
(j− l + |k−m|)!

bj−lδk−m,0. (2.31)

The simplified translations and transformations can be written as follows. For the shift of a

multipole expansion we get the formula:

ωlm(a+b,q) =
l

∑
j=|m|

bl−j

(l− j)!
ωjm(a,q). (2.32)

The transformation of a distant multipole expansion to a local Taylor-like expansion takes

18

2.5 CROSSOVERPOINT

the form:

µlm(b−a,q) =
∞

∑
j=0

(j + l)!
bj+l+1 ωj,−m(a,q). (2.33)

The translation of a Taylor-like expansion can then be rewritten as:

µlm(r −b,q) =
∞

∑
j=l

bl−j

(j− l)!
µjm(r,q). (2.34)

An arbitrary rotation can be split into two rotations. Firstly, the phase of the moments is

changed by a rotation about thez-axis. Secondly, the multipole expansion is rotated about

the y-axis. All rotations conserve the total angular momentum and can be described via

Wigner matrices. It can be proven that this leads to the same results as the standard method

[10]. It is clear, that especially for high accuracy calculations this implementation is more

efficient.

Even further reduction is possible by using Fast Fourier Transform (FFT), reducing the op-

erator complexity toO(L2 logL), but massive changes have to be applied and significantly

more memory is required. In contrast, the rotation-based FMM does not need significant

amount of additional memory. For further reading see Reference [40].

2.5 Crossover Point

To compare the FMM to the direct method, it is necessary to know at which particle number

the method is more efficient than direct pairwise evaluation. Since the direct summation

scales withO(N2) and the FMM scales withO(N) there should be a particle number for

which the FMM outperforms the direct summation. The management of the FMM structure,

the setup of the tree and the formation of the multipole moments are not for free. So it is

important to know, where the break-even point occurs. It is also clear, that this crossover

point depends on the requested error. The direct summation method loses precision on ev-

ery summation step due to rounding errors [32]. The FMM is also susceptible for rounding

errors. However, the linear scaling will produce less rounding errors as a result of fewer

floating point operations. Additionally, it is possible to set a specific error bound precisely.

In Table 2.1 two crossover-points are shown. The first one with moderate relative error level

of ∆E = 10−5 and the second one almost with machine precision1. The "break-even" point

1machine precisionϸ ≈ 2.22·10−16 on JUMP [22]

19

2 THE FAST MULTIPOLE METHOD (FMM)

∆Erel,req ∆Erel Time[sec] Method Depth Multipole Length N

10−5 0.77·10−05 0.011 FMM 1.62 4 512

- 0.33·10−12 0.013 Direct - - 512

10−11 0.22·10−11 0.50 FMM 1.62 16 4096

- 0.97·10−11 1.01 Direct - - 4096

Table 2.1: In this implementation of the FMM the Crossover point with moderate error of
∆Erel = 10−5 is at 512 particles. For higher accuracy the crossover point shifts to 4096
particles. For particle numbers higher than 4096 this implementation of the FMM is always
faster than direct summation, and at least as accurate as direct summation.

between the FMM and the "direct" method, i.e. the point where the two methods take the

same amount of execution time, isN ≈ 512. Note that: Even for 512 particle the direct sum-

mation loses about 3 figures of accuracy. Thus, the second crossover-point shows the FMM

compared to direct summation with truncation error in the same range. All reference values

were computed with quad-precision to guarantee the error bound even for direct summation.

Finding crossover points are discussed in many publications [13, 36, 25]. However, the

range of the crossover points strongly depends on the implementation.

2.6 Test Calculations

To prove the theoretical scaling properties some test cases are considered. Two scaling prop-

erties are of particular interest. Firstly, how does the computation time increase when the

system size gets larger but multipole length is fixed? Secondly, how does the computation

time increase when the multipole length increases, hence the computation is more accurate,

but the number of particles is fixed?

2.6.1 O(N) Scaling with Number of Particles N

Increasing the system size by a factor of eight should yield a computation time eight times

higher, since the FMM is a linear scaling method. Fixing the multipole length to 15, three

different systems were examined. The first one contained 86, the second 87 and the last

88 particles. The particles were evenly distributed on a grid, thus all lowest level boxes

20

2.6 TEST CALCULATIONS

N Time[hh:mm:ss]1 Scaling Depth Multipole Length

262144 0:01:09 - 5 15

2097152 0:09:29 8.25 [8] 6 15

16777216 1:16:12 8.04 [8] 7 15

134217728 10:17:57 8.11 [8] 8 15
1 All results were obtained on JUMP [22]

Table 2.2: Scaling concerning the number of particlesN . Multipole expansion length is fixed
to validate linear scaling factor of eight.

contained the same number of particles. Table 2.2 presents the obtained scaling factors. The

result shows linear scaling with a factor of about eight as it was expected. The slightly higher

values of 8.04, 8.11 and 8.35 are due to administration costs within the FMM. Every new

level introduces a little overhead to the computation.

2.6.2 O(L3) Scaling with Multipole Length L

In section 2.4 all described operators showed a complexity of orderO(L3). Thus, it is inter-

esting how strong theL3-term affects the computation time for realistic multipole lengths.

Realistic multipole lengths are referred to computations within the numerical feasible range.

Multipole lengths yielding a theoretical precision beyond machine precision are not referred

as realistic. The question is: How expensive is a higher accuracy?

Table 2.3 illustrates the context. For a fixed particle system with more than one billion

particles the length of the multipole expansion is increased gradually. Doubling the multipole

length should slow down the computation by a factor of eight. Instead, it shows that the

computation time roughly increases by a factor of two. This fact can be pointed out for

almost all realistic multipole lengths. Only for very high multipole lengths yielding in results

near machine precision the slope rises and shows the expected non-linear behavior. This is

advantageous for high precision calculations. Note that the same calculation performed by

direct summation [32] would only allow a relative error bound of about 10−5. Ten figures

are simply lost due to truncation errors. To obtain this result with todays computer power

this calculation would need more than 5 years on a single CPU.

21

2 THE FAST MULTIPOLE METHOD (FMM)

N* ∆Erel,req ∆Erel Time[hh:mm] Depth Multipole Length

1073741824 10−03 0.2·10−03 05:44 8.7 3

1073741824 10−06 0.4·10−06 08:22 8.5 6

1073741824 10−09 0.4·10−09 12:35 8.1 10

1073741824 10−12 0.3·10−12 18:47 7.8 15

1073741824 10−14 0.7·10−14 25:59 7.7 18

*
The computation time obtained for the 810 particles test case withL = 15 case cannot be compared with
results from Table 2.2. This is only possible for optimal FMM parameter sets. All results from Table 2.2
have a fixed multipole length and no fractional FMM tree depths. Thus, the parameter set is not optimal.

Table 2.3: Scaling concerning the lengthL of the multipole expansion. The number of
particles is fixed to 810.

22

2.6 TEST CALCULATIONS

(a) The translation axis is not along thez-axis. (b) Step 1: The coordinate system is rotated such
that the translation axis is along thez-axis.

(c) Step 2: The multipole expansionωlm is trans-
formed to local Taylor-like expansionµlm .

(d) Step 3: Rotate back the coordinate system.

Figure 2.14: Rotation-based FMM.

23

24

3 FMM Gradient

Molecular dynamic calculations do not only require the total Coulomb energy. To describe

particle systems and introduce dynamics, the forces acting on each particle are more inter-

esting. The goal ofN-body problems is to determine the motion over time of particles due to

forces induced by other particles. The basic method used to describe the motion is to iterate

using discrete time steps and repeat the following operations:

• Update positionsxi using velocitiesvi , xi+1 = xi +∆tvi

• Calculate forcesF

• Update velocitiesvi

In the FMM scheme, it is very easy to obtain the Coulomb forces within little extra compu-

tational effort. In general, the potentialφ(r) is a continuous function on a coordinate space.

If it is known for every value ofr, we can calculate the forces on all particles by computing

the gradient∇φ(r) .

This chapter describes two ways of obtaining the forces on the system’s particles. The

first one is straightforward. The second one needs shift operations but does not require the

evaluation of complicated derivaties of multipole moments.

+ =

Near Field Part Far Field Part Total

Figure 3.1: Calculation of the gradient for near field and far field parts.

25

3 FMM GRADIENT

θ

φ
y

x

z

r

~re

~φe

~θe

x

y

z

(a)

potentialφ(r)

r

∇φ(r)

(b)

Figure 3.2: Spherical polar coordinates introduced on a sphere.

As seen in Chapter 2, computation is split up in two parts – the near field part, where all

next neighbor interactions are computed, and the far field part for all remaining interactions.

This structure is retained for gradient calculations and implies an implementation of the

gradient computation on the same basis. Firstly, a derivative of the near field part, secondly

the derivative of the far field part (See Figure 3.1).

3.1 Gradient Fundamentals

As there is a lot of discordance defining spherical coordinates especially for the symbolsθ

andφ, thus the conventions used in this thesis are explained briefly.

We define spherical coordinates as follows (See Figure 3.2). A pointpk with spherical

coordinates (rk ,θk ,φk) has the following Cartesian coordinates:

xk = rk sinθk cosφk , yk = rk sinθk sinφk , zk = rk cosθk , (3.1)

whererk ∈ [0,∞), θk ∈ [0,π] andφk ∈ [0,2π). The potential at pointrk due to all chargesql

at positionr l is defined as:

φ(rk) =
N

∑
l=1

ql

rkl
(k 6= l). (3.2)

The respective Coulomb force acting on a particle with chargeqk is then given by the gradi-

ent ofφ:

F(rk) = qk

N

∑
l=1

ql

r3
kl

rkl . (3.3)

26

3.2 STANDARD FMM GRADIENT

3.2 Standard FMM Gradient

In section 2.1.1 it was shown that the FMM takes advantage of spherical harmonics to factor-

ize the inverse distance. Since the input particle system is passed in Cartesian coordinates,

the calculation of the Coulomb forces should be Cartesian likewise. However, the FMM is

based on spherical coordinates. Thus, a transformation of the derivatives is necessary: ∂/∂x

∂/∂y

∂/∂z

 =

 ∂r/∂x ∂θ/∂x ∂φ/∂x

∂r/∂y ∂θ/∂y ∂φ/∂y

∂r/∂z ∂θ/∂z ∂φ/∂z


 ∂/∂r

∂/∂θ

∂/∂φ

 . (3.4)

The Cartesian partial derivatives in spherical coordinates therefore are: ∂/∂x

∂/∂y

∂/∂z

 =

 sinθcosϕ cosθcosϕ −sinϕ

sinθsinϕ cosθsinϕ −cosϕ

cosθ −sinθ 0


 ∂/∂r

1
r ∂/∂θ

1
r sinθ∂/∂ϕ

 . (3.5)

Numerical problems can occur forr = 0 and anglesθ = 0 as these values induce undefined

expressions. Since it is possible that such a situation arises during the computation, special

handling must be implemented. It is also possible to transform the spherical derivatives such

that indefinite expressions vanish. In this case, not only∂/∂θ has to be derived, but both

terms1
r ∂/∂θ and 1

r sinθ∂/∂φ have to be transformed.

3.2.1 Standard Far Field Gradient

The Coulomb forces are defined as the gradient of the potential. As the potential is factorized

in a multipole expansion and a local Taylor-like expansion, only the multipole part needs to

be derived to obtain the Coulomb forces:

∂E

∂(xk ,yk ,zk)
=

L

∑
l=0

l

∑
m=−l

µlm
∂ωk

lm

∂(xk ,yk ,zk)
. (3.6)

A given multipole expansion, with:

ωk
lm = qr l 1

(l +m)!
Plme−imφ, (3.7)

27

3 FMM GRADIENT

µ

(a) Taylor-like expansion

ω

(b) Multipole expansion

µ Taylor coefficientsµlm

ω Multipole momentsωlm

Figure 3.3: Standard far field gradient: Both, the multipole gradient (b) of all local charges
and the Taylor-like expansion (a) of all distant charges reside at the box center. Thus, the
two contributions can be multiplied, yielding the far field gradient for each particle within
the box.

must be derived for∂/∂r, 1
r ∂/∂θ and 1

r sinθ ∂/∂ϕ. Especially the latter is complicated, since

derivatives∂ωlm
∂ϕ do not contain parts ofθ, namely 1/sinθ. By help of recurrence relations,

the results are:

∂ωlm

∂r
= q l

r l−1

(l +m)!
Plme−imϕ,

1
r

∂ωlm

∂θ
=

1
2

q
r l−1

(l +m)!
[(l−m +1)(l +m)Plm−1−Plm+1]e−imϕ,

1
r sinθ

∂ωlm

∂ϕ
= −1

2
q

r l−1

(l +m)!
[(l−m +1)(l−m +2)Pl+1m−1 +Pl+1m+1] i e−imϕ.

Hence, all derivatives are given in terms of the associated Legendre polynomialsPlm only.

Figure 3.3 illustrates this scheme.

3.2.2 Standard Near Field Gradient

For the near field part derivatives are less complicated since the inverse distance is not ex-

panded and can be rewritten in Cartesian coordinates easily. Writing the total Coulomb

28

3.2 STANDARD FMM GRADIENT

energy in Cartesian coordinates yields:

E =
N−1

∑
i=1

N

∑
j=i+1

qiqj√
(xi −xj)2 +(yi −yj)2 +(zi −zj)2

. (3.8)

Re-writing as a double sum over all particles and demandingi 6= j gives:

E =
1
2

N

∑
i=1

N

∑
j=1

qiqj√
(xi −xj)2 +(yi −yj)2 +(zi −zj)2

. (3.9)

For i 6= j the derivatives can be transformed to:

∂E

∂xk
=−1

2

N

∑
i=1

N

∑
j=1

qiqj
[
(xi −xj)2 +(yi −yj)2 +(zi −zj)2]−3/2

(xi −xj)(δik −δjk). (3.10)

To separate the difference of the two delta functions(δik − δjk), Equation (3.10) is trans-

formed to:

∂E

∂xk
=−1

2

N

∑
i=1

N

∑
j=1

qiqj
[
(xi −xj)2 +(yi −yj)2 +(zi −zj)2]−3/2

(xi −xj)δik (3.11)

+
1
2

N

∑
i=1

N

∑
j=1

qiqj
[
(xi −xj)2 +(yi −yj)2 +(zi −zj)2]−3/2

(xi −xj)δjk.

Evaluating the delta functions leads to:

∂E

∂xk
=

1
2

N

∑
j=1

qkqj
[
(xk −xj)2 +(yk −yj)2 +(zk −zj)2]−3/2

(xj −xk) (3.12)

1
2

N

∑
i=1

qkqi
[
(xi −xk)2 +(yi −yk)2 +(zi −zk)2]−3/2

(xi −xk),

with j 6= k andi 6= k. Both sums can be combined by changing the indexj to i. Finally the

derivative in directionxk is described by:

∂E

∂xk
= qk

N

∑
i=1

qi
xi −xk

[(xi −xk)2 +(yi −yk)2 +(zi −zk)2](3/2) . (3.13)

29

3 FMM GRADIENT

3.3 Alternative Far Field Gradient

Similarly to the standard implementation of the FMM gradient, the Taylor-like expansion

resides at the center of each lowest level box. According to Equation (2.11) the far field part

of the total Coulomb energy is given by:

E = ∑
ibox

L

∑
l=0

l

∑
m=−l

ωlmµlm .

In contrast to the former implementation, the Taylor-like expansion is not multiplied with

the derivative of the multipole expansion at the box center to obtain the FMM gradient.

Instead, the Taylor-like expansion is shifted to the particle position. Therefore, the operator

O is applied (See section 2.1.7):

µshift
lm =

L

∑
j=l

j

∑
k=−j

Oj−l k−m µjk.

A Taylor-like expansionµjk at box center shifted to particle position yieldsµshift
lm . Cor-

respondingly, all multipole derivatives are formed at particle position. This scheme is illus-

trated in Figure 3.4. Examining the derivatives, we find that all derivatives provide non-zero

values forl = 1 only. The expressionr l−1 becomes zero for alll 6= 1, since this corresponds

to evaluating the multipole expansion at particle position withr = 0. The complicated deriva-

tives in Equation (3.8) take a simpler form:

∂ωlm

∂r
= q

1
(1+m)!

P1me−imϕ

1
r

∂ωlm

∂θ
=

1
2

q
1

(1+m)!
[(2−m)(1+m)P1,m−1−P1,m+1]e−imϕ

1
r sinθ

∂ωlm

∂ϕ
= −1

2
q

1
(1+m)!

[(2−m)(3−m)P2,m−1 +P2,m+1] i e−imϕ

Hence, we only need multipole coefficients withl = 1 andm ∈ {0,1}. The derivatives can

30

3.4 IMPLEMENTATION DETAILS

µ

(a)

r

µ

(b)

ω

(c)

Figure 3.4: Alternative far field gradient – (a) In pass 2 remote multipole expansions are
transformed to a local Taylor-like expansion at the center of each lowest level box. (b) The
Taylor-like expansion is shifted to every particle position. (c) The multipole expansion is
evaluated at particle position.

be simplified:
∂E
∂x
∂E
∂y
∂E
∂z

 =

 0 1
2qRe(µ11) 0

0 0 −1
2qIm(µ11)

qRe(µ10) 0 0


 Re(ω10)

Re(ω11)
Im(ω11)

 . (3.14)

The computational complexity of operatorO decreases fromO(L4) to O(L2) because only

two multipoles are needed, namelyw10 andω11
1.

3.4 Implementation Details

Our FMM implementation does not store multipole momentsωlm for m < 0, since this would

waste memory with redundant information (See Figure 3.5). To obtain these moments, the

following equation is used:

ωl,−m = (−1)mω∗
lm , (3.15)

1As the standard near field gradient does not contain a multipole approach, and thus can be seen as the classical
gradient on a subset of particles, there will be no changes in the computation scheme. The alternative gradient
algorithm only handles the far field part.

31

3 FMM GRADIENT

with ω∗
lm denotes the complex conjugate determined through the relation:

ω∗
lm = [Re(ω)lm)+ Im(ωlm)]∗ = [Re(ωlm)− Im(ωlm)] . (3.16)

The same holds forµl,−m . The total Coulomb energyE now can be written as:

E = ∑
ibox

L

∑
l=0

[
Re(ωl0)Re(µl0)+2

L

∑
m=1

(Re(ωlm)Re(µlm)− Im(ωlm) Im(µlm))

]
. (3.17)

Taking the derivative of the last equation yields:

∂E

∂(x,y,z)
= ∑

ibox

L

∑
l=0

[
∂Re(ωl0)
∂(x,y,z)

Re(µl0)+ (3.18)

2
L

∑
m=1

(
∂Re(ωlm)
∂(x,y,z)

Re(µlm)− ∂Im(ωlm)
∂(x,y,z)

Im(µlm)
)]

.

The first step in calculating the alternative gradient is to shift the Taylor-like expansion from

the center of the box to each of the charges in any lowest box. Therefore, the Taylor-like

expansion has to be multiplied with operatorO. Equation (3.3) has to be transformed to be

applicable, since we do not store coefficients withk < 0. All expressions withk < 0 must

be transformed according to Equation (3.15). As onlyµ10 andµ11 are needed for calculating

the alternative gradient, the shifted Taylor-like expansion forµ10 is represented by:

µshift
10 =

n

∑
j=1

[
Oj−1,0µj0 +

j

∑
k=1

(
Oj−1,kµjk +(−1)2kO∗

j−1,kµ∗jk
)

.

]
(3.19)

However,Oj−1,j is always zero, hence the inner sum only has to be taken for indices until

j−1:

µ10 =
n

∑
1

[
Oj−1,0µj0 +

j−1

∑
k=1

(
Oj−1,kµjk +(−1)2kO∗

j−1,kµ∗jk
)]

. (3.20)

For µ11 we continue likewise:

µ11 =
n

∑
j=1

[
Oj−1,−1µj0 +

j

∑
k=1

(
Oj−1,k−1µjk +(−1)2k+1O∗

j−1,k+1µ∗jk
)]

. (3.21)

32

3.5 COMPARING BOTH ALGORITHMS

30

4

10

2

5

2

1

1

0

21 2 3

0 1 2 0

1 32 4 6

j

k

0 3 3 3 4 4 4 5

4

5 5 5 5 5

0 3

4 5

542101 13 2

0 7 8 9 11 1312 14 15 16 17 18 19 20index

Figure 3.5: The multipole momentswjk, and respectively the coefficients of the Taylor-like
expansionµjk, are stored in memory with regard to their index.

By splitting the inner sum into two parts we get:

µ11 =
n

∑
j=1

[
−O∗

j−1,−1µj0 +
j

∑
k=1

(Oj−1,k−1µjk)+
j−2

∑
k=1

(
O∗

j−1,k+1µ∗jk
)]

. (3.22)

To combine the shifts forµ10 andµ11, further transformations take place:

µ10 = O00µ10+O10µ20+O11µ21+O∗
11µ

∗
21+ (3.23)

n

∑
j=3

[
Oj−1,0µj0 +

j−2

∑
k=1

(
Oj−1,kµjk +O∗

j−1,kµ∗jk
)
+Oj−1,j−1µj,j−1 +O∗

j−1,j−1µ∗j,j−1

]
,

µ11 = O00µ11−O∗
11µ20+O10µ21+O11µ22+ (3.24)

n

∑
j=3

[
−O∗

j−1,1µj0 +

j−1

∑
k=1

(
Oj−1,k−1µjk −O∗

j−1,k+1µ∗jk
)
+Oj−1,j−2µj,j−1 +Oj−1,j−1µjj

]
.

Now, bothµ10 andµ11 can be used to calculate the alternative gradient in one loop overj.

Thereby, the number of load and store operations is reduced, hence the calculation can be

performed faster.

3.5 Comparing Both Algorithms

The alternative algorithm takes a simpler form and avoids complicated derivatives. The alter-

native implementation leads to 20% faster results for the gradient subroutine. This improve-

33

3 FMM GRADIENT

Method Gradient I Gradient II Gradient III*

total time (seconds) 284.89 283.20 277.62

instructions 7.480·109 7.499·109 5.960·109

divisions 86.247·106 73.955·106 73.937·106

load/store 2.593·109 2.558·109 1.662·109

TLB1 misses 46470 16998 26903

L1 cache2 hit rate 81.421% 94.359% 90.124%

FMA3 percentage 37.133% 67.193% 61.983%

instructions (rel.) 100.00% 100.25% 79.68%
* Improved alternative gradient II algorithm with reduced number of instructions.
1 TLB: Translation Lookaside Buffer
2 L1 cache: Level 1 cache
3 FMA: Fused Multiply and Add

Table 3.1: Hardware performance monitoring for both gradient algorithms.

ment is independent from the number of multipoles used and does not depend on the given

accuracy. Even very high accuracy calculations with 20 and more multipoles benefit from

this implementation. Table 3.1 compares different gradient algorithms. The standard FMM

gradient, the alternative FMM gradient and the improved alternative FMM gradient have

been instrumented usinglibhpm [35] hardware counter to measure several runtime proper-

ties. The improved alternative gradient differs in the subroutine’s loop structure. Bothµ10

andµ11 are calculated using one loop only. The number of load and store operations is re-

duced and the code performes 20% faster. The number of instructions is reduced by 20% and

load and store operations reduce to 64%. Without this improvement the alternative algoritm

performs as fast as the standard algorithm. The results are shown in Figure 3.6a and 3.6b.

34

3.5 COMPARING BOTH ALGORITHMS

10 20 30 40 50
multipole length L

0

10

20

30
tim

e
(s

)

5 10 20 30 40 50

1

5
10
20
30

(a) Gradient computation shows the expected non-linearL scaling. The subplot repre-
sents a log-log plot of the data.

5e+04 1e+05 2e+05 2e+05 2e+05
particle index

-1e-14

0

1e-14

re
la

tiv
e

er
ro

r

(b) Both gradient implementations yield the same results with relative error in the
magnitude of the machine precision.

Figure 3.6: (a) The figure shows the scaling of the gradient algorithms with regard to multi-
pole lengthL. However, theL-scaling does not show the theoretical cubic behavior. Instead,
the plot shows a quadratical dependency ofL. The non-linear fit yields 1.98 as exponent.
This dependency can also be seen in Table 2.3 on page 22. (b) The figure shows the relative
error of the alternative gradient algorithm in relation to the standard implementation.

35

36

4 Parallelization of the FMM

The solution of theN-body problem is considered to be a "Grand Challenge Problem". There

is a broad field of scientific applications ranging from astronomy over molecular dynamics,

plasma physics and fluid dynamics. Grand Challenge Applications (GCA’s) usually require

state-of-the-art massively parallel computers. One could e.g. think of protein folding, with

about 1 million particles and more than 1000 time steps. Without using parallel computers

and algorithms, solving this problem would be out of reach. A parallel version of the FMM

offers a viable approach to further expand the scale of these scientific applications. Using

such an implementation in molecular dynamics codes allows to increase the number of parti-

cles to be simulated and to perform more time steps. This chapter illustrates a first approach

towards a parallel version of the FMM.

4.1 Programming Models

Parallel software development introduces several new problems not encountered during se-

quential programming, namely: data partitioning and distribution, communication, synchro-

nization and load balancing. Only two models will be introduced briefly to establish the

fundamentals of this area.

4.1.1 Message Passing

Message passing is a method of communication between processes. One process sends data

and another process receives the data. When writing parallel applications using message

passing, the programmer still has to develop a significant amount of program code to handle

many tasks of the parallelization, such as:

• data partitioning and distribution,

• the communication and synchronization between processes, and

• mapping of processes onto processors.

37

4 PARALLELIZATION OF THE FMM

Common message passing libraries for scientific computation are e.g. MPI [20] or PVM

[16].

4.1.2 Distributed Shared Memory (DSM)

In contrast to message passing, in a DSM environment a process fetching data does not

need to know its location in the remote process’ memory; the library finds and fetches it

automatically based on a global index. While scalable parallel machines are mostly based on

distributed memory, one may find it easier to use contiguous memory indexing for parallel

programs, which is provided by a shared memory programming model. A special shared

memory style environment namedGlobal Arrays Toolkitis presented in section 4.4. Others

are e.g. Posix Threads [8] or System V Shmem [26].

4.1.3 Design

There is no simple recipe for designing parallel algorithms. We use the approach of data

parallelism. Other approaches can be found in [41, 33], but will not be considered here.

However, it is possible to split up the design process into four distinct stages :

Partitioning Starting from the sequential code the data it operates on can be decomposed

into several smaller chunks. This method, the decomposition of the data associated with the

problem, is called domain/data parallelism.

Communication Communication is necessary to transfer data between cooperating pro-

cesses. Usually the design of parallel algorithms aims to reduce the communication volume,

as transferring data between different processes is time consuming.

Agglomeration The communication structure defined by the previous step is not opti-

mal most likely. For performance reasons, some individual communications may be bun-

dled together into a single communication. This helps to reduce the overall communication

overhead. However, combining messages does not come for free, computational costs will

increase.

Load Balancing The goal of a parallel problem is a maximal utilization of the system

resources, while keeping communication costs minimal. When it is not possible to perform

38

4.2 PARALLEL PROGRAMMING PARADIGMS

static load balancing at compile time, dynamic load balancing at runtime can improve per-

formance.

4.2 Parallel Programming Paradigms

The type of parallelism inherent in the problem and available computing resources determine

the choice of the paradigm. The structure of the program or the data binds to a special kind

of parallelism. The most popular approaches are described below.

1. Task/Farming (Master/Slave)

2. Single program multiple data (SPMD)

3. Divide and Conquer

4.2.1 Task-Farming: Master/Slave

The task-farming approach subdivides the computational resources into two entities: master

process(es) and multiple slave processes (See Figure 4.1a). The master decomposes the main

problem into smaller tasks and distributes these among the slave processes. The final result

of the computation is assembled by the master after collecting the partial results from the

slave processes. The slave process only has to receive a message containing a task, process

the task and send a message back to the master with the results. As the slaves are controlled

by the master there usually is no communication between slaves. Only the master and slaves

communicate. Load balancing may either be static or dynamic and is implemented in the

master process.

For the static case, the distribution is forwarded to the slaves at the beginning of the com-

putation. Thus, the master can participate in the computation. Dynamic load-balancing is

more suitable,

• when prediction of the execution time is not possible, or

• when less processors than tasks are available, or

• when the number of tasks is not known before the communication.

The dynamic scheme has several advantages. The parallel application can adjust to changes

in the load of the processors. Also, it is possible to compensate a total outage of some slave

39

4 PARALLELIZATION OF THE FMM

processes. However, the centralized role of the master process puts some restraints on the

scalability of the program. For a large number of processes, the communication between

master and slaves will use a large amount of time. To overcome this restraint and improve

the scalability, a single master process can be replaced by a set of masters, each of them

controlling a subset of slaves.

4.2.2 SPMD

In the SPMD paradigm each process executes the same code, but works with different parts

of the data. This is also suitable for the FMM. The application splits the data among the

processors that are available (See Figure 4.1c). Due to the splitting it is also called geometric

parallelism, domain decomposition, or data parallelism. The underlying regular geometric

structure and the spatially limited interactions in the FMM and many physical problems

make them suitable for the SPMD paradigm. Communication is generally performed with

neighbor processes, and the associated communication load is proportional to the size of

the boundary elements, while the computation load will be proportional to the volume of

the elements. Thus, the communication pattern is highly structured. The data may initially

be loaded by each process. For homogeneous systems and properly distributed data the

parallel SPMD application may show up very efficient. An inhomogeneous distribution can

be handled via a load balancing scheme. Thus, the program can adapt the data distribution

layout during run-time.

4.2.3 Divide and Conquer

This approach partitions the problem into several independent subproblems. These subprob-

lems can be solved by the involved processes without communication. The results of the

subproblem can be merged and thus form the final result. This scheme is already known

from sequential divide and conquer algorithms. In a parallel implementation, the subprob-

lems can be solved independently and simultaneous. Thus, the scheme can be described in

three steps (See Figure 4.1b):

• split,

• compute,

• merge.

40

4.3 IMPLEMENTATION

Master

Slave 1 Slave 2 Slave 3

Slave 4 Slave 5 Slave 6

(a) Master/Slave

independent subproblems

split/join

split/join

main problem

(b) Divide and Conquer

distribute data

collect results

calculate
communicate

calculate

(c) SPMD

Figure 4.1: Different parallel programming paradigms are available for parallelization.

4.3 Implementation

The parallelization schemes presented, offer a broad range of possibilities, but not all of them

are suitable for the FMM. A main issue in parallelizing the FMM is the lack of memory. As

shown in Table 4.2 on page 47, a billion particles would require about 100 GB of memory.

Thus, it is impossible to store redundant data on every process. Data must be distributed

and can not be replicated. Each process is allowed to store a fraction of all particles only.

Therefore, the task-farming approach is not suitable. The master – a single process – would

need to store the entire simulation data. All other processes – the slaves – would receive their

fraction.

A more suitable approach with less data redundancy is the divide and conquer paradigm.

By employing, the parallelization takes advantage of the tree-like structure of the FMM. The

tree is split up among the processes. Interacting boxes at the edge are the only redundant data

stored. For the lowest level no communication between the processes takes place. However,

for higher levels of the tree, communication is necessary.

To completely avoid redundant data storage the SPMD scheme is preferable. In this

scheme, one process stores only a fraction of the full data. All interacting boxes not con-

tained in the local memory have to be fetched from remote processors. This scheme allows

a minimal memory consumption, but comes at the costs of increased communication. As it

is our goal to handle very large particle systems, the parallelization of the FMM was to limit

the system size by the computing power, but not the available memory. Thus, the SPMD

paradigm was chosen for parallelization.

41

4 PARALLELIZATION OF THE FMM

Furthermore, the structure of the sequential FMM had to be preserved in the parallel ver-

sion. Therefore, data structures of the sequential implementations are represented in the

same manner via distributed shared memory for the parallel version. All distributed arrays

are generated as global arrays, setup and data management are performed by the GA library.

All communication can be implemented one-sided without explicitly specifying send and

receive operations on the remote process. Also load balancing schemes and asynchronous

communication can be implemented more efficiently.

4.4 The Global Arrays (GA) Toolkit

4.4.1 Description

TheGlobal Arrays Toolkit[28] provides a shared-memory programming interface for distri-

buted-memory computers. Each process can asynchronously access logical blocks of physi-

cally distributed data, without explicit cooperation with the host process. Global Arrays have

been designed to offer a shared-memory environment on top of a message-passing program-

ming model. It provides the programmer both with shared-memory and message-passing

functionality. Global Arrays are compatible with the Message Passing Interface (MPI).

Data is stored in global arrays and can be used as if it were stored in shared memory.

All details of the data distribution, addressing, and data access are encapsulated in a global

array object. GA logically divides shared data structures into local and remote portions. Any

process can access a local portion of the shared data directly like any other data in the local

memory. Access to other portions of the shared data must be done through GA library calls.

The shared memory operationsget, put, scatter andgather are used to access the remote

data. The communication is implemented using one-sided communication. It is possible to

generate both regular or irregular data distribution patterns.

It is not necessary to deal with addresses of the distributed data, as the GA toolkit offers an

index-based interface for access. Additionally, it is not necessary to specify the target process

id when executing a remote memory operation. GA will find out by itself, where the refer-

enced data resides. However, it is possible to request information of the data distribution.

42

4.4 THE GLOBAL ARRAYS (GA) TOOLKIT

local memory

one process

i

1
2

i-1

(a) Sequential data distribution

memory p:n

n processes

i

i-3
i-2
i-1

memory p:m

k+2

k-1
k

k+1

memory p:0

4

1
2
3 · · · · · ·

(b) Parallel data distribution

Figure 4.2: (a) Continuous memory can be accessed directly on one process. (b) Global data
is distributed amongn processes. Data has to be accessed by GA routines.

4.4.2 Relevant GA Operations

To parallelize the FMM, only a few functions from the GA library are necessary. This sec-

tion outlines all functions [29] used to initialize the GA environment and perform remote

operations on the global data.

GA Operations - Properties

collective operations require all processes to make the call.

local operations are local to each process and do not require communication.

atomic operations have mutual exclusion built in. Concurrent read/write operations are

prevented by the GA library.

GA Process Information

integer function ga_nodeid()

integer function ga_nnodes()

The functionsga_nodeid returns the process ID andga_nnodes returns the total number of

processes.

One-sided Communication, Blocking

subroutine nga_acc(hdl,loidx,hiidx,buf,ldim,scale)

subroutine nga_put(hdl,loidx,hiidx,buf,ldim)

subroutine nga_get(hdl,loidx,hiidx,buf,ldim)

TheGlobal Arrays Toolkitprovides one-sided operations that allow access to global arrays

without implicit interaction with the process holding the requested data. To perform remote

43

4 PARALLELIZATION OF THE FMM

read and write operations, the proceduresnga_get andnga_put are required. With help of

nga_acc, a remote update can be applied to specific parts. This subroutine adds the data

moved to the target process, rather than replacing the data. The operation isatomic. GA

assures that multiple processes accessing the same patch will be handled correctly and in a

consistent way.

One-sided Communication, Non-blocking

subroutine nga_nbacc(hdl,loidx,hiidx,buf,ldim,scale,waithdl)

subroutine nga_nbput(hdl,loidx,hiidx,buf,ldim,waithdl)

subroutine nga_nbget(hdl,loidx,hiidx,buf,ldim,waithdl)

subroutine nga_nbwait(waithdl)

The non-blocking implementation provides the same features as the blocking one, however

non-blocking operations return before data transfer is completed. To finalize the operation

and reuse the variables involved,nga_nbwait has to be called.

Local Access to GA

subroutine nga_distribution(hdl,myid,loidx,hiidx)

subroutine nga_access(hdl,loidx,hiidx,ptr,ldim)

subroutine nga_release(hdl,loidx,hiidx)

To access the local part of the global array directly withoutnga_get or nga_put calls, the

toolkit allows direct access via an integer handle that acts like a pointer to the local address.

Therefore,nga_distribution finds the local part of the global array. Access is established

via anga_access call. To release access one has to callnga_release.

Initialization, Termination

subroutine ga_initialize()

subroutine nga_create(atype,ndims,dims,aname,chunk,hdl)

subroutine ga_fill(hdl,value)

subroutine nga_destroy(hdl)

subroutine ga_terminate()

After setting up the message-passing library (e.g. MPI), the GA library is initialized by

ga_initialize. Creating new arrays is done via the nga_create subroutine. This creates

a global array, which is regularly distributed over all processes. It can be up to seven di-

mensional. Setting initial values is done via thega_fill subroutine. Global arrays can be

destroyed by callingga_destroy. To terminate the GA program, the subroutinega_terminate

is called.

44

4.5 SEQUENTIAL FMM DATA LAYOUT

Synchronization

subroutine ga_sync()

A global barrier can be established via thega_sync command. This collective operation

synchronizes all processes and ensures that all global operations started before thega_sync

are completed after the call.

Global Operations

subroutine nga_read_inc(hdl,index,value)

subroutine ga_igop(MT_INT,var,length,op)

subroutine ga_dgop(MT_INT,var,length,op)

The functionnga_read_inc remotely updates a particular element in the global array. It can

be seen as a global counter. This operation is atomic.

4.5 Sequential FMM Data Layout

The FMM consists of five passes. (See section 2.1) The most time-consuming parts are pass

2 (See section 2.1.3 on page 9) and pass 5 (See section 2.1.6 on page 12). Pass 2 calculates

the far field interactions via multipoles. Pass 5 calculates the near field interactions via a

direct summation. Both pass 2 and pass 5 consume more than 90% of the total computation

time. (See Table 4.1 for details.) The data for a FMM run can be divided into

• input data,

• output data and

• auxiliary data.

The input data includes the charge and the position of the simulation particles in three di-

mensions and the designated error bound. Output data are the total Coulomb energy, the

Coulomb forces for each particle and the Coulomb potential for each particle. During the

calculation the FMM needs additional auxiliary data. Each particle is assigned a certain box.

The box vector stores the box number for the particles. To accelerate access to neighbor

boxes, this vector is stored twice with a different bit order. Thus, it is not necessary to cal-

culate the index of neighboring boxes over and over again. Furthermore, a list is required to

store the multipole and Taylor-like expansion for each box. Since it is essential to establish

an order in the input data, an additional sort vector is stored to allow re-ordering after the

FMM finishes.

45

4 PARALLELIZATION OF THE FMM

Pass Status Dependencies Runtime

Setup - - 2.20%

Pass 1 sequential local & tree 1.47%

Pass 2 parallel neighbor & tree 29.53%

Pass 3 sequential tree 1.00%

Pass 4 sequential local 2.20%

Pass 5 parallel neighbor 63.80%

Table 4.1: Approximate computation time of the single passes.

4.6 Parallel FMM Data Layout

Firstly, the passes 2 and 5 were considered for the parallelization. These passes are the

most time-consuming parts and take more than 90% of the computation time. Therefore,

it is appropriate to begin parallelization only for these parts. For a proper scalability at

high processor numbers, it is important to parallelize all parts of the FMM and reduce the

number of sequential parts in the code to a minimum. However, this is beyond the scope

of this thesis. As described in section 4.3, the FMM data has to be partitioned by a domain

composition and distributed to the processes. The calculations on each process are performed

without interleaved communication. Network operations are necessary for overlapping boxes

or neighbor boxes only. An overlapping box is shared by two or more processes. Thus, one

of the processes involved has to fetch data from remote process(es). The same holds for

neighbor boxes that might reside on another process.

To take full advantage of the memory that is available all data structures with a size de-

pending on the particle or box number are distributed among the processes. Thus, all the

data shown in Table 4.2 has to be distributed. The distribution is carried out by using space

filling curves (SFC) [1]. Other FMM implementations used similar techniques [18, 30].

4.6.1 Space-filling Curves

The ordering of the data in memory is of little interest for the sequential implementation of

the FMM. All the data can be accessed directly in memory. However, for the parallel version,

every process only can access its local data directly. Thus, the workload of the problem has

46

4.6 PARALLEL FMM DATA LAYOUT

Type Name Data Type Elements Size per Entry

input coordinates double 3n 8 bytes

input charges double n 8 bytes

input error bound double 1 8 bytes

output Coulomb energy double 1 8 bytes

output Cartesian forces double 3n 8 bytes

output Coulomb potential double n 8 bytes

aux. box vector integer n 8 bytes

aux. box scratch vector integer n 8 bytes

aux. box sort vector integer n 8 bytes

aux. multipole expansion complex 1
2(L +1)(L +2)b 16 bytes

aux. Taylor expansion complex 1
2(L +1)(L +2)b 16 bytes

Table 4.2: Memory requirements for input, output and auxiliary data necessary for the FMM;
100 GB memory for one billion particles (n= 810) and five multipoles (L= 5).Variableb
represents the number of non-empty boxes and therefore depends on the particle distribution.

to be distributed evenly in order to use parallelism efficiently. Otherwise some processes will

become idle and therefore do not participate in the computation any longer. For a large num-

ber of processes it is very important to implement a proper static load balancing. Once the

data is distributed unevenly among the processes, a redistribution becomes very inefficient

and expensive, because it makes another communication step necessary. Therefore, one has

to prevent an uneven distribution in advance. An even distribution assures a consistent com-

putation time for all processes. Figure 4.3 illustrates several ways to partition the simulation

space. Three examples are shown; a distribution along a Hilbert curve, a distribution along a

Gray curve and a distribution along a Morton curve. These curves differ from each other with

regard to jumps and locality of the curve. A common property of all space-filling curves [27]

is that every box is passed only once. The 2D examples can be extended to three or more di-

mensions as well. Thereby, the multidimensional structure is transformed to one dimension.

Through this, it is easy to partition the 3D structure intop equal parts forp processes. Then,

these sections can be distributed among the processes. The space-filling curve should not

contain jumps to preserve data locality. The Hilbert curve is most suitable, since it does not

47

4 PARALLELIZATION OF THE FMM

(a) Hilbert curve (b) Gray curve (c) Morton curve

Figure 4.3: Several space-filling curves. For simplicity in two dimensions.

(x,y,z) Dimension Mixing SFC Index

x y z

(0,2,1) 000 010 001 000010001 17

(3,0,7) 011 000 111 001101101 111

(7,2,0) 111 010 000 100110100 308

Table 4.3: Morton space-filling curve and bit mixing in three dimensions. Each box is repre-
sented by its coordinates(x,y,z). This three dimensional representation can be transformed
to a Morton ordered one-dimensional box index (SFC index).

contain any jumps. The next box along this curve is a direct neighbor every time. However,

a Morton ordering of the data was chosen for the parallelization of the FMM. This curve has

advantages for the FMM structure itself. Table 4.3 shows how one can obtain corresponding

neighbor boxes easily. A parent box of a certain box can be determined using a bit shift on

the box index. Thus, the navigation in the FMM tree from top to bottom and the other way

round is very efficient.

4.6.2 Data Distribution

The input data arrays have to be sorted according to a box vector. Thus, the charges of the

particles and the coordinates are ordered using the same SFC used for the box vector. This

configuration assures the same indexing and distribution for all input arrays. To obtain the

48

4.6 PARALLEL FMM DATA LAYOUT

00 00 00 01

00 11

10 00

10 01

11 00

11 10

10 10

10 11

11 01

11 11

01 10 01 11

01 00 01 01

00 10

(a) 2D child boxes

00 xx

10 xx 11 xx

01 xx

(b) 2D parent boxes

0- 1-

00 01 10 11

–

(c) 1D FMM tree with child and parent
boxes

Figure 4.4: Morton ordering the data has several advantages. The SFC can be used to stat-
ically distribute the array among the processes [1]. (a) and (b) A bit shift enables access to
child or parent boxes. On the other hand, tree traversal is kept simple (c), since it can be
performed by shifting bit positions.

charge or position of particlek, the box indexk can be used to look up the data. To obtain

locality, the charge and position has been distributed like the box index.

4.6.3 Parallel Subroutines

The granularity of the parallel version of the FMM is at box level. Thus, all operations that

require full boxes remain sequential. A deeper parallelism was not introduced, as calculation

with only a few boxes would lack performance. On the other hand, even for small systems

(< 105 particles) enough boxes for distribution exist. For operations on the particle level

parallel subroutines are necessary. The setup of the box vector or sorting the data into the

boxes are two examples, where the sequential subroutines have to be replaced by parallel

versions.

Box Vector

The management of the particles in the FMM is performed via the box vector. The length

of this vector corresponds to the number of particles. Each particle is assigned an unique

box number on each level (See Figure 4.4). This number is represented as a binary key. The

setup of the box vector is shown in Figure 4.5. Since the box structure is defined by a Morton

ordered space-filling curve, it is possible to access neighbor data very efficiently. Thus, a bit

shift to the right yields the parent box. A shift to the left admits access to the child boxes.

For example, a box number of 42 would be 101010 in binary notation. A bit shift to the right

49

4 PARALLELIZATION OF THE FMM

adress

value

A B C D E F G H I J K L M N O P Q R S T U

3 3 3 4 4 4 4 6 6 6 6 7 7 9 9 9 9 13 13 13 13

Figure 4.5: The distributed box vector has redundant information. The viewed process con-
tains elements starting from address ’C’ to address ’S’. The elements ’. . .A,B’ and ’T . . .’
reside on neighbor processes.

adress

value

A B C D E F G H I J K L M N O P Q R S T U

-3 -2 -1 4 6 7 9 13-1-2-3 -1-2-3 -1 -1-2-3 -3 -2-4

Figure 4.6: Box vector in skip vector form. To establish fast access to the elements of this
vector all redundant informations are replaced by jump positions to the next box index. Thus,
the search for a certain box index becomes faster, since only a few search steps have to be
performed.

would give 101 and hence a box number of 5.

Sorting

The FMM needs sorted data in many places. For setting up the FMM tree, all particles

have to be sorted into the associated boxes. This sorting takes place at every tree level.

Starting at level two, the particle position and charge are already pre-sorted. Subsequent

sorting steps can benefit from this pre-sorting. The sorting has to scale linearly with the

number of particles, since we want an implementation that scales linearly. Radix sort offers

this property. The parallel FMM uses parallel radix sorting. The sorting is done in-place to

ensure efficient memory usage. Here, in-place means that no additional memory is required

that depends on the size of the data to be sorted. The sorting algorithm is allowed to take up

a constant amount of memory only. The sorting subroutines are encapsulated in a C library

and therefore can be adapted to the FMM via preprocessor directives [23] in a flexible way.

Sorting is done with respect to the box vector. Starting from box number 1, all particles are

sorted into the boxes. Sorting stops at the lowest level. No further sorting is done, since all

intra box interactions are computed together. Finishing the computation, all calculated data

is sorted back to fit the input data.

50

4.7 LOCALITY & GLOBAL OPERATIONS

A

C

process n
memory range

1 2 876543

B

B

B

B

B

B

C

A

Figure 4.7: Parallel skip-box vector. Elements of one and the same box can overlap several
processes. Therefore, communication is necessary to setup the box vector in parallel.

4.7 Locality & Global Operations

Introducing parallelism becomes easier when using a distributed shared memory approach.

Every direct access to distributed data has to be replaced by a call toget for reading and a

call to put for writing. Therefore an additional buffer has to be set up. This buffer holds the

input and output data of the local calculation. After finishing the calculation, the buffer can

be written to the global data and new data can be collected from the global data. However,

this scheme is not optimal. Even local data would be buffered and therefore generate compu-

tational overhead in comparison to direct access. Performing several million read and write

operations via put/get would slow down the algorithm (See Table 4.5). Therefore, most of

the sequential functions have been parallelized in two versions. A complete local operation

is done via direct variable access. An operation which is not completely local, will use the

second function, which uses put/get calls to read or write the data. This scheme is illustrated

in Listing 4.1.

Pass 5

The parallel design of the FMM described in this section considers pass 5 as example. In the

fifth pass, the near field interaction is calculated. The sequential version of pass 5 consists

of two sub-functions. The first one computes the intra box interactions on the lowest level.

51

4 PARALLELIZATION OF THE FMM

Variable Explanation Value

bbox(1,level,myid) global address of first local box C

bbox(2,level,myid) global address of last local box S

bbox(3,level,myid) first local box number 3

bbox(4,level,myid) last local box number 13

bbox(5,level,myid) global address of first local starting box D

bbox(6,level,myid) global address of last local ending box Q

bbox(7,level,myid) box number of first local starting box 4

bbox(8,level,myid) box number of last local ending box 9

bbox(9,level,myid) yes, if no local starting box exists no

bbox(10,level,myid) number of local charges 17

bbox(11,level,myid) first local last box number 3

Table 4.4: Box element information is shared among the processes prior to setup the skip-box
vector to minimize communication.

inbox interaction neighbor interaction

Pass 5: Direct Interaction

+

Figure 4.8: Sequential pass 5.

The second one computes the box to neighbor-box interactions on the lowest level. Figure

4.8 illustrates this scheme.

However, the parallel version has to handle distributed data. One can assume that the

number of lowest level boxes is higher than the number of processes. Thus, a single process

holds more than one lowest level box. An overlapping box can occur between two neighbor

processes only. Withp processes, there arep−1 overlapping boxes. However, it is possible

for a special configuration that one box extends more than two processes. This particular

case is implemented as well, but will not be discussed here. Since parallelism ends at box

level, divided boxes must be communicated and this will slow down the computation.

52

4.7 LOCALITY & GLOBAL OPERATIONS

process 0 process 1 process 2 process 3

calculate all non overlapping boxes

calculate overlapping boxes

prefetch overlapping boxes
p0 p1 p2

p1 p2

p0 p1 p2

p0 p3

Figure 4.9: All intra-box interactions are calculated without communication. Only the com-
putation of intra-box interaction for boxes shared by two or more processes need communi-
cation. These overlapping boxes are prefetched. Afterwards all non-overlapping intra-box
interactions are calculated. Finally the prefetched boxes are used to calculate the remaining
interactions. This scheme is shown for four processes exemplarily.

local memory

ibox(i)
i-1

i
i+1
i+2

i-2

local memory

ibox(i)
i-1

i
i+1
i+2

i-2

GA image

3468
3469
3470
3471

3467

Figure 4.10: Local data can be accessed directly without using GA’s get/put routines.

function ibox(a)

if a == local then

buf=ibox1loc(localaddress)

else

call get(a(globaladdress))

endif

ibox=buf

end function ibox

Listing 4.1: Wrapper function to access local and remote portions of the box vector.

Therewith, it is obvious that all intra box interactions except for overlapping boxes can

be computed locally. Every process needs its local data only. Overlapping boxes can be

distributed prior to computation, and thus reduce idle times (See Figure 4.9).

53

4 PARALLELIZATION OF THE FMM

Pass 5: Direct Interaction

Setup

•prefetch overlapping boxes
•setup access to local GA
•partition load chunks

NeighborInbox

•calculate local inbox
•calculate overlapping inbox
•collectEc

tot(inbox)

•calculate neighbors
•dynamic load-balancing
•collectEc

tot(neighbor)

Figure 4.11: Parallel pass 5. Dynamic load balancing is applied to box neighbor-box inter-
actions only.

Method Rate Total Time

GA get,put,acc 100% 2.85 seconds

GA and local access 86% 2.45 seconds

Table 4.5: Access to local memory can be performed faster, when memory is accessed di-
rectly without using GA get/put calls. (See Figure 4.10 for details) However, concurrent
write operations are not prevented by the GA library. The programmer has to guarantee
that no concurrent operations occur, otherwise the data in the accessed memory range may
become inconsistent.

4.8 Load-Balancing

Load balancing is not necessary in a sequential program. A parallel program can suffer load

imbalances and therefore cannot guaranty total balance in the first place. Efficiency depends

on the data distribution and the communication time between processes. A distinction is

drawn between static and dynamic load balancing. The first one operates on data distributed

prior to computation. A subsequent distribution is not performed. Dynamic load balancing

allows subsequent data distribution. Indeed, this is more expensive, but has the advantage

that all processes are kept busy and idle time can be reduced. This implementation of the

FMM handles both static and dynamic load balancing for pass 5.

54

4.8 LOAD-BALANCING

(a) Homogeneous distribution (b) Inhomogeneous distribution

Figure 4.12: Test cases: (a) Homogeneous particle distribution; particles reside inside the
box on grid points. (b) Inhomogeneous particle distribution; particles reside only on the
surface of the shaded sphere.

4.8.1 Static Load-Balancing

Parallelism in the FMM is achieved through distributed data. Each process executes the same

code on different parts of the data. Thereby, the input data – coordinates and charges – are

distributed evenly between the processes. Each process holds the same amount of particles

independently from the particle distribution in the simulation box. However, the number

of boxes containing the particles does not need to be equal for all processes. Good load

balancing can be achieved for homogeneous distributions. However, static load balancing

is not sufficient for inhomogeneous particle distributions as shown in Figure 4.12b. Some

processes become idle and the efficiency decreases.

4.8.2 Dynamic Load-Balancing

Dynamic load balancing was implemented to be independent from the particle distribution

in the simulation box and to avoid load imbalance. Thus, it is possible to reduce imbalance

during the calculation, which was not possible in the static case. A process finished with

its local data would become idle. Dynamic load balancing allows to transfer outstanding

calculations from remote processes to another process which has already finished its local

55

4 PARALLELIZATION OF THE FMM

work. This scheme is now outlined for pass 5.

In the beginning of pass 5, the data is distributed as shown for the static case. Firstly,

all intra box interactions are calculated. Therefore, a dynamic load balancing scheme is not

necessary since the static load balancing leads to adequate balance. This does not hold for

box-box interactions. Imbalance is possible and must be reduced. The procedure is as fol-

lows. Each process subdivides its local boxes into a certain number of groups. These groups

of boxes define the granularity of the code. After finishing the calculation of a group, a glob-

ally available progress counter is increased. The counter holds the current progress for each

process. Thus, there arep counters forp processes organized in a global array. Incrementing

the counter is done locally, thus the global array does not need to be synchronized for writing.

Each process has to look up the local progress state only. Load balancing is activated by the

first process finishing its local groups. This process becomes a support process, since there

are no local calculations left. Now the supporting process can access the global array storing

all progress informations. All processes still busy with their local data are not affected. After

receiving the progress list, a host process with minimum progress is chosen to be supported.

An additional global array allows to send a request to the remote host to offer support. Af-

terwards the support process waits for acknowledgement. It becomes necessary since the

remote process still operates with direct data access. It is not possible, if two processes work

on neighboring data. Especially concurrent writing in one and the same box could falsify

the result. Allowing access to data via GA operations only, guarantees that concurrent data

access does not occur. After receiving the acknowledgement from the remote host, the sup-

port process is able to pick up an unique remote group number with data. This data is copied

into a local buffer and is processed. The host and support processes are involved in the load

balancing scheme only. The remaining processes are not influenced. Moreover, this scheme

can handle offers from more than one support process. The usage of a global counter for

every process and lock operations permitting concurrent writing guarantee that one and the

same group of particles is not processed twice.

To save computation time for homogeneous distributions and avoid gratuitous load bal-

ancing the support is limited to a certain group number. Thus, it would be more expensive to

distribute the last groups to remote processes. Hence, the last groups of local data are pro-

cessed locally. The number of groups available for support was determined experimentally

and depends on the the communication time and bandwidth of the network.

56

4.9 PARALLEL SCALING

0 5 10 15processes
1.0

1.5

2.0

2.5

3.0

to
ta

l t
im

e
(s

)

ideal load balancing
static load balancing
dyn. load balancing

(a) sufficient static load balancing (bars)

0 5 10 15processes
1.0

1.5

2.0

2.5

3.0

to
ta

l t
im

e
(s

)

ideal load balancing
static load balancing
dyn. load balancing

(b) insufficient static load balancing (bars)

Figure 4.13: Static load balancing is adequate for homogeneous distributed particles. To
assure parallel efficiency for inhomogeneous distributions a dynamic load balancing has to
be implemented.

4.9 Parallel Scaling

A particle system with 87 particles was chosen to determine the scaling. All particles are

homogeneously distributed and reside on a grid. The maximal number of processes was

chosen as 32. A processor number larger than 32 is not reasonable, since the calculation time

for 32 processes amounts to only few seconds and the running time is already dominated by

GA initialization routines. Scaling figures for pass 2 and pass 5 are shown in Figure 4.14,

since only these passes were considered for parallelization. The discrepancy between the

ideal scaling and the achieved scaling can be explained as follows. Increasing the number

of processes leads to an increasing number of boxes at the edge of a processor’s domain.

Therefore, more boxes have to be transmitted to neighbor processes. At the same time, the

number of local data accesses decreases. The limiting part of the scalability for pass 2 is

the number of boxes at the edge of a processor’s domain, and also sorting the particles into

lowest level boxes. The scaling for pass 2 is shown with and without sorting. Superlinear

behavior in the range from 2 to 8 processes is accomplished because of cache effects. The

scaling for pass 2 can be seen as a worst case scenario, since it shows the initialization run

for the FMM [2]. This run is completely identical to pass 2, except there is no calculation

but only communication. All subsequent passes do not need to re-sort the data and have to

calculate only the interactions.

57

4 PARALLELIZATION OF THE FMM

1 2 4 8 16 32
number of processes

0

10

20

30

sp
ee

du
p

measurement
ideal

(a) Pass 5 scaling plot

1 2 4 8 16 32
number of processes

5

10

15

20

25

30

sp
ee

du
p

measurement (+sort)
ideal
measurement (-sort)

(b) Pass 2 scaling plot

Figure 4.14: (a) Parallel scaling for pass 5. (b) Parallel scaling for pass 2. The bold line
represents the parallel scaling for the setup in pass 2. Succeeding runs of pass 2 can operate
on pre-sorted data for each tree level. Thus, the thin line represents parallel scaling of pass 2
for pre-sorted data.

58

5 Summary and Outlook

This thesis covers the implementation of a gradient algorithm and the parallelization of the

fast multipole method. In order to describe the implementation the FMM gradient, all nec-

essary FMM fundamentals are introduced in the second chapter. The linear scaling of the

sequential FMM, as well as a scheme to reduce the operator costs are shown.

The third chapter describes the gradient fundamentals and two different gradient algo-

rithms. A standard gradient algorithm is discussed and an alternative gradient algorithm

is introduced. The improved implementation of the FMM gradient offers two advantages

compared to the standard implementation. Firstly, no complicated derivatives have to be

calculated at runtime. All necessary derivatives can be acquired from the multipole expan-

sion at the particle position and the shifted Taylor-like expansion. In contrast to the standard

implementation, undefined expressions in the derivatives are avoided. Secondly, gradient

computation time is reduced by 20% independently of the multipole length. The order of

magnitude of the error in comparison to the standard gradient is near machine precision.

Thus, the improved computation scheme does not introduce additional errors.

The fourth chapter describes the parallelization of the FMM. A parallel FMM algorithm

was implemented using theGlobal Arrays toolkit, maintaining the sequential FMM data

structures. Static and dynamic load balancing were implemented, since the parallelization of

N-body algorithms, in general, creates an unstructured communication pattern. To achieve

high performance forN-body simulations, load imbalances due to inhomogeneous particle

distributions have to be reduced dynamically. The tradeoff between maintaining data locality

and equally balanced computational load requires schemes that combine static load balanc-

ing schemes necessary for data locality with dynamic load balancing schemes that improve

the parallel efficiency of the FMM. For performance reasons, the parallelization made use

of maximal data locality. The granularity in the parallel data structures was chosen such

that the decomposition and distribution of the data matches the inherent decomposition in

the sequential FMM. The parallel performance was tested for particle systems containing 2

million and 16 million particles.

59

5 SUMMARY AND OUTLOOK

The parallel implementation shows good scaling properties for up to 32 processes. An

even higher processor number would require larger particle systems, since the computation

time per process for 2 million particles amounts to some seconds only. However, the im-

plementation could be improved by merging remote boxes together prior to transmission.

Memory is used efficiently, since no data in the magnitude of the input data is stored re-

dundantly. As a side effect, the accuracy of the computation is improved with an increasing

number of processes, because of the tree-like summation of the data. Indeed, while the

required error bound was preserved in the sequential version, the parallel version reduced

the actual computational error even further, as each process sums up its fraction of the total

energy by itself, and afterwards computes the total energy by adding up all fractions from

the different processes. This is similar to a tree-like adding scheme. Rounding errors are

avoided, since most of the data has the same order of magnitude. The parallel version of

the FMM can handle both homogeneous or inhomogeneous particle distributions efficiently

using a dynamic load balancing scheme.

The parallel version of the FMM offers the possibility to calculate very large particle

systems with billions of particles. The data distribution allows to use the available memory

very efficiently. Also smaller systems will gain from the parallelization, since a computation

time of only a few seconds enables molecular dynamic simulations to perform single time

steps almost in real time.

60

Bibliography

[1] S. Aluru and F. Sevilgen. Parallel domain decomposition and load balancing using

space-filling curves. InProc. 4th International Conference on High-Performance Com-

puting, pages 230–235, 1997.

[2] D. H. Bailey. Highly parallel perspective: Twelve ways to fool the masses when giving

performance results on parallel computers.Supercomputing Review, 4(8):54, August

1991.

[3] J. Barnes and P. Hut. A hierarchicalO(N logN) force-calculation algorithm.Nature,

324:446–449, 1986.

[4] R. Beatson and L. Greengard. A short course on fast multipole methods. pages 1–37,

1997.

[5] J. A. Board, Jr., J. W. Causey, J. F. Leathrum, Jr., A. Windemuth, and K. Schulten.

Accelerated molecular-dynamics simulation with the parallel fast multipole algorithm.

Chem. Phys. Lett., 198(1):89–94, October 1992.

[6] A. Brandt. Multi-level adaptive solutions to boundary-value problems.Math. of Com-

putation, 31:333–390, 1977.

[7] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and

M. Karplus. CHARMM: A program for macromolecular energy, minimization, and

dynamics calculations.J. Computational Chemistry, 4(2):187 – 217, 1983.

[8] D. R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 1997.

[9] M. S. Gordon C. H. Choi, K. Ruedenberg. New parallel optimal-parameter fast multi-

pole method (OPFMM).J. Comp. Chem., 22:1484–1501, 2001.

61

BIBLIOGRAPHY

[10] C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg. Rapid and stable determina-

tion of rotation matrices between spherical harmonics by direct recursion.The Journal

of Chemical Physics, 111(19):8825–8831, 1999.

[11] T. Darden, D. York, and L. Pedersen. Particle mesh Ewald — anN logN method for

Ewald sums in large systems.J. Chem. Phys, 98:10089–10092, June 1993.

[12] Junichiro Makino Department. Grape project.

[13] H. Q. Ding, N. Karasawa, and W. A. Goddard, III. Atomic level simulations on a mil-

lion particles: the cell multipole method of Coulomb and London nonbond interactions.

J. Chem. Phys., 97(6):4309–4315, September 1992.

[14] J. Dongarra and F. Sullivan. Guest Editors’ Introduction: The Top 10 Algorithms.

Computing in Science and Engg., 2(1):22–23, 2000.

[15] P. P. Ewald. The calculation of optical and electrostatic grid potential.Ann. Phys.,

64:253, 1921.

[16] A. Geist, A. Beguelin, J. Dongarra, We. Jiang, R. Manchek, and V. S. Sunderam.PVM:

Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked Parallel Com-

puting. Scientific and engineering computation. 1994.

[17] L. Greengard. The numerical solution of the n-body problem.Comput. Phys., 4(2):142–

152, 1990.

[18] L. Greengard and W. Gropp. A parallel version of the fast multipole method-invited

talk. InProceedings of the Third SIAM Conference on Parallel Processing for Scientific

Computing, pages 213–222, Philadelphia, PA, USA, 1989. Society for Industrial and

Applied Mathematics.

[19] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations.J. Comput.

Phys., 73(2):325–348, 1987.

[20] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, William Saphir, ,

and M. Snir.MPI — The Complete Reference: Volume 2, the MPI-2 Extensions. MIT

Press, 1998.

[21] R. W. Hockney and J. W. Eastwood.Computer Simulation Using Particles. 1988.

62

BIBLIOGRAPHY

[22] S. Hoefler-Thierfeldt.User Documentation. Juelich Multiprocessor JUMP, 2004.

[23] M. Hofmann. Paralleles Sortieren am Beispiel der schnellen Multipolmethode. Mas-

ter’s thesis, Chemnitz University of Technology, 2005.

[24] C. L. Brooks III, B. M. Pettitt, and M. Karplus. Structural and energetic effects of

truncating long ranged interactions in ionic and polar fluids.The Journal of Chemical

Physics, 83(11):5897–5908, 1985.

[25] Shimada J, H. Kaneko, and T. Takada. Performance of fast multipole methods for

calculating electrostatic interactions in biomacromolecular simulations.J. Comput.

Chem., 15(1):28–43, 1994.

[26] A. E. Koniges, editor.Industrial Strength Parallel Computing. 2000.

[27] M. F. Mokbel, W. G. Aref, and I. Kamel. Analysis of multi-dimensional space-filling

curves.Geoinformatica, 7(3):179–209, 2003.

[28] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global Arrays: A nonuniform mem-

ory access programming model for high-performance computers.The Journal of Su-

percomputing, 10(2):169–189, 1996.

[29] J. Nieplocha, Jialin Ju, M. K. Krishnan, B. Palmer, and Vinod Tipparaju. The Global

Arrays user’s manual. Technical report, Pacific Northwest National Laboratory, 2002.

[30] L. S. Nyland, J. F. Prins, and J. H. Reif. A data-parallel implementation of the adaptive

fast multipole algorithm. InProceedings of the 1993 DAGS/PC Symposium, pages

111–123, Hanover, NH, 1993.

[31] H. G. Petersen, D. Soelvason, J. W. Perram, and E. R. Smith. The very fast multipole

method.J. Chem. Phys., 101(10):8870–8876, November 1994.

[32] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and Brian P. Flannery.Numerical

Recipes in FORTRAN; The Art of Scientific Computing. Cambridge University Press,

New York, NY, USA, 1993.

[33] T. Rauber and G. Rünger.Parallele und verteilte Programmierung – Architektur, Pro-

grammierung, Algorithmen. Springer, 2000.

63

BIBLIOGRAPHY

[34] V. Rokhlin. Rapid solution of integral equations of classical potential theory.J. Comp.

Phys., 60:187–207, October 1985.

[35] L. De Rose. The hardware performance monitor toolkit. InEuro-Par ’01: Proceed-

ings of the 7th International Euro-Par Conference Manchester on Parallel Processing,

pages 122–131, London, UK, 2001. Springer-Verlag.

[36] K. E. Schmidt and M. A. Lee. Implementing the fast multipole method in three dimen-

sions.J. Stat. Phys., 63:1223–1235, 1991.

[37] M. S. Warren and J. K. Salmon. A portable parallel particle program.Computer Physics

Communications, 87(1–2):266–290, 1995.

[38] C. A. White and M. Head-Gordon. Derivation and efficient implementation of the fast

multipole method.J. Chem. Phys, 101:6593–6605, October 1994.

[39] C. A. White and M. Head-Gordon. Fractional tiers in fast multipole method calcula-

tions. J. Chem. Phys. Lett., 257(5):647, 1996.

[40] C. A. White and M. Head-Gordon. Rotating around the quartic angular momentum bar-

rier in fast multipole method calculations.J. Chem. Phys, 105:5061–5067, September

1996.

[41] B. Wilkinson and M. Allen.Parallel programming: techniques and applications using

networked workstations and parallel computers. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1999.

64

A Computational Resources

All computations were performed on JUMP [22]. Computations with less than 32 processors

are guaranteed to run on a single frame .

A.1 Hardware

SMP Cluster

IBM p690 Frame Characteristics

• 32 processors, Power4+, 1.7 GHz

• Main Memory: 128 GB, 567 MHz

• Internal L1 cache: 64 KB instruction, 32 KB data (per processor)

• Shared L2 cache: 1.5 MB (per chip = 2 processors)

• Shared L3 cache: 512 MB (per frame)

• Peak performance: 218 GFLOPS

Cluster Characteristics

• Total number of p690 frames: 41

• Total number of processors: 1312

• Aggregate peak performance: 8.9 TFLOPS

• LINPACK performance (41 nodes): 5.568 TFLOPS

• Aggregate main memory: 5.2 TByte

65

APPENDIX

• Global disk space (GPFS): 8 x 7 x 14 x 72 GB = 56 TB

• Cluster interconnect: HPS - High Performance Switch:

– Bandwidth > 1400 MB/s per link

– Latency < 6.5 us

A.2 Software

Operating System

IBM AIX 5.2

Compiler

IBM XL Fortran Enterprise Edition, version 9.1

IBM XL C/C++ Enterprise Edition, version 7.0

Global Arrays

Version 3.3

Compiler switches:

USE_MPI = y

TARGET = IBM64

66

