000005165 001__ 5165
000005165 005__ 20200402205627.0
000005165 0247_ $$2pmid$$apmid:19551796
000005165 0247_ $$2DOI$$a10.1002/cbic.200900251
000005165 0247_ $$2WOS$$aWOS:000268504500015
000005165 037__ $$aPreJuSER-5165
000005165 041__ $$aeng
000005165 082__ $$a540
000005165 084__ $$2WoS$$aBiochemistry & Molecular Biology
000005165 084__ $$2WoS$$aChemistry, Medicinal
000005165 1001_ $$0P:(DE-Juel1)VDB60877$$aKriegsmann, J.$$b0$$uFZJ
000005165 245__ $$aTranslational Diffusion and Interaction of a Photoreceptor and Its Cognate Transducer Observed in Giant Unilamellar Vesicles by Using Dual-Focus FCS
000005165 260__ $$aWeinheim$$bWiley-VCH$$c2009
000005165 300__ $$a1823 - 1829
000005165 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000005165 3367_ $$2DataCite$$aOutput Types/Journal article
000005165 3367_ $$00$$2EndNote$$aJournal Article
000005165 3367_ $$2BibTeX$$aARTICLE
000005165 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000005165 3367_ $$2DRIVER$$aarticle
000005165 440_0 $$08962$$aChemBioChem$$v10$$x1439-4227$$y11
000005165 500__ $$aThe priority program SPP 7128 of Deutsche Forschungsgemeinschaft (F1 84113-1,2 to J.F and to J.E) and the DFG graduate school 1035 "Biointerface" are acknowledged for funding. We thank B. Kaupp and G. Baldt for continuous support in their institutes.
000005165 520__ $$aIn order to monitor membrane-protein binding in lipid bilayers at physiological protein concentrations, we employed the recently developed dual-focus fluorescence correlation spectroscopy (2fFCS) technique. In a case study on a photoreceptor consisting of seven transmembrane helices and its cognate transducer (two transmembrane helices), the lateral diffusion for these integral membrane proteins was analyzed in giant unilamellar vesicles (GUVs). The two-dimensional diffusion coefficients of both separately diffusing proteins differ significantly, with D = 2.2 x 10(-8) cm2 s(-1) for the photoreceptor and with D = 4.1 x 10(-8) cm2 s(-1) for the transducer. In GUVs with both membrane proteins present together, we observed significantly smaller diffusion coefficients for labelled transducer molecules; this indicates the presence of larger diffusing units and therefore intermolecular protein binding. Based on the phenomenological dependence of diffusion coefficients on the molecule's cylindrical radius, we are able to estimate the degree of membrane protein binding on a quantitative level.
000005165 536__ $$0G:(DE-Juel1)FUEK443$$2G:(DE-HGF)$$aProgramm Biosoft$$cN03$$x0
000005165 588__ $$aDataset connected to Web of Science, Pubmed
000005165 65320 $$2Author$$afluorescence spectroscopy
000005165 65320 $$2Author$$agiant unilamellar vesicles
000005165 65320 $$2Author$$amembrane proteins
000005165 65320 $$2Author$$aphoto-signaling complexes
000005165 65320 $$2Author$$aprotein diffusion
000005165 650_2 $$2MeSH$$aArchaeal Proteins: chemistry
000005165 650_2 $$2MeSH$$aArchaeal Proteins: metabolism
000005165 650_2 $$2MeSH$$aCarotenoids: chemistry
000005165 650_2 $$2MeSH$$aCarotenoids: metabolism
000005165 650_2 $$2MeSH$$aDiffusion
000005165 650_2 $$2MeSH$$aLipid Bilayers: chemistry
000005165 650_2 $$2MeSH$$aMembrane Proteins: chemistry
000005165 650_2 $$2MeSH$$aPhotoreceptors, Microbial: chemistry
000005165 650_2 $$2MeSH$$aPhotoreceptors, Microbial: metabolism
000005165 650_2 $$2MeSH$$aProtein Binding
000005165 650_2 $$2MeSH$$aSpectrometry, Fluorescence
000005165 650_2 $$2MeSH$$aUnilamellar Liposomes: chemistry
000005165 650_7 $$00$$2NLM Chemicals$$aArchaeal Proteins
000005165 650_7 $$00$$2NLM Chemicals$$aHtrII protein, Natronobacterium pharaonis
000005165 650_7 $$00$$2NLM Chemicals$$aLipid Bilayers
000005165 650_7 $$00$$2NLM Chemicals$$aMembrane Proteins
000005165 650_7 $$00$$2NLM Chemicals$$aPhotoreceptors, Microbial
000005165 650_7 $$00$$2NLM Chemicals$$aUnilamellar Liposomes
000005165 650_7 $$00$$2NLM Chemicals$$aphototaxis receptor sensory rhodopsin II, Natronobacterium pharaonis
000005165 650_7 $$036-88-4$$2NLM Chemicals$$aCarotenoids
000005165 650_7 $$2WoSType$$aJ
000005165 7001_ $$0P:(DE-HGF)0$$aGregor, I.$$b1
000005165 7001_ $$0P:(DE-HGF)0$$avon der Hocht, I.$$b2
000005165 7001_ $$0P:(DE-HGF)0$$aKlare, J.$$b3
000005165 7001_ $$0P:(DE-HGF)0$$aEngelhard, M.$$b4
000005165 7001_ $$0P:(DE-HGF)0$$aEnderlein, J.$$b5
000005165 7001_ $$0P:(DE-Juel1)131961$$aFitter, J.$$b6$$uFZJ
000005165 773__ $$0PERI:(DE-600)2020469-3$$a10.1002/cbic.200900251$$gVol. 10, p. 1823 - 1829$$p1823 - 1829$$q10<1823 - 1829$$tChemBioChem$$v10$$x1439-4227$$y2009
000005165 8567_ $$uhttp://dx.doi.org/10.1002/cbic.200900251
000005165 909CO $$ooai:juser.fz-juelich.de:5165$$pVDB
000005165 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000005165 9141_ $$y2009
000005165 9131_ $$0G:(DE-Juel1)FUEK443$$aDE-HGF$$bSchlüsseltechnologien$$kN03$$lBioSoft$$vProgramm Biosoft$$x0$$zentfällt
000005165 9201_ $$0I:(DE-Juel1)ISB-2-20090406$$d31.12.2010$$gISB$$kISB-2$$lMolekulare Biophysik$$x0
000005165 970__ $$aVDB:(DE-Juel1)112623
000005165 980__ $$aVDB
000005165 980__ $$aConvertedRecord
000005165 980__ $$ajournal
000005165 980__ $$aI:(DE-Juel1)ICS-6-20110106
000005165 980__ $$aUNRESTRICTED
000005165 981__ $$aI:(DE-Juel1)IBI-7-20200312
000005165 981__ $$aI:(DE-Juel1)ICS-6-20110106
000005165 981__ $$aI:(DE-Juel1)ISB-2-20090406