001     51767
005     20180211163631.0
024 7 _ |2 DOI
|a 10.2136/vzj2005.0056
024 7 _ |2 WOS
|a WOS:000237916500001
037 _ _ |a PreJuSER-51767
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Environmental Sciences
084 _ _ |2 WoS
|a Soil Science
084 _ _ |2 WoS
|a Water Resources
100 1 _ |a Javaux, M.
|b 0
|u FZJ
|0 P:(DE-Juel1)129477
245 _ _ |a Three-Dimensional Modeling of the Scale- and Flow Rate-Dependency of Dispersion in a Heterogeneous Unsaturated Sandy Monolith
260 _ _ |a Madison, Wis.
|b SSSA
|c 2006
300 _ _ |a 515 - 528
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Vadose Zone Journal
|x 1539-1663
|0 10301
|v 5
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Spatial heterogeneity in soil hydraulic properties strongly affects solute transport. However, the level of precision needed in the description of spatial variability to properly reproduce the solute mixing regime is still an open question. We investigated this problem by analyzing observed inert solute transport using three-dimensional simulations with different levels of complexity in the material description. The scale- and flow-dependency of the dispersivity was first characterized from a series of leaching experiments during unsaturated steady-state flow in a heterogeneous sandy monolith. The structure and hydraulic property variability within the monolith was investigated as well by means of an exhaustive survey of the monolith, and by intensive soil core sampling allowing for hydraulic characterization. In this study, three three-dimensional models are constructed, involving several levels of complexity. In Case I, only the macrostructure variability is represented. In Case II, scaling factors encoding the spatial variability in the hydraulic properties of the sandy matrix are implemented. In Case III, an anisotropy factor for hydraulic conductivity is added to the macrostructure and the microheterogeneity of the sand matrix. Results show that microheterogeneity is needed to reproduce qualitatively the scale- and flow rate-dependency of the transport parameters. Despite the elaborate effort devoted to the structure characterization, no model was fully capable of reproducing observed solute transport in the monolith and at the outlet.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Kasteel, R.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB724
700 1 _ |a Vanderborght, J.
|b 2
|u FZJ
|0 P:(DE-Juel1)129548
700 1 _ |a Vanclooster, M.
|b 3
|0 P:(DE-HGF)0
773 _ _ |a 10.2136/vzj2005.0056
|g Vol. 5, p. 515 - 528
|p 515 - 528
|q 5<515 - 528
|0 PERI:(DE-600)2088189-7
|t Vadose zone journal
|v 5
|y 2006
|x 1539-1663
856 7 _ |u http://dx.doi.org/10.2136/vzj2005.0056
909 C O |o oai:juser.fz-juelich.de:51767
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-IV
|l Agrosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB50
|x 0
970 _ _ |a VDB:(DE-Juel1)81322
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21