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ABSTRACT
One-dimensional transport models that predict field-scale averaged

solute fluxes are often used to estimate the risk of nonpoint source
groundwater contamination by widespread surface-applied chemicals.
However, within-field variability of soil hydraulic properties leads
to lateral variation in local solute fluxes. When this smaller scale
variability is characterized in a geostatistical sense, stochastic three-
dimensional flow and transport equations can be used to predict field-
scale averaged transport in terms of geostatistical parameters. We
discuss the use of stochastic equations for the parameterization of
equivalent one-dimensional models predicting averaged solute fluxes.
First, we consider the equivalent one-dimensional convection disper-
sion model and the equivalent dispersivity, which characterizes the
spreading of laterally averaged concentrations or solute fluxes. Sec-
ond, we discuss the parameterization of a stream tube model to predict
local transport variables (i.e., distributions of local concentrations and
local arrival times) These local transport variables are shown to be
important for predicting nonlinear local transport processes and useful
for inversely inferring the spatial structure of soil properties. Stochastic
flow and transport equations reveal a dependency of equivalent model
parameters on transport distance and flow rate, which reflects the
importance of smaller scale heterogeneities on field-scale transport.
Approximate solutions of stochastic flow and transport equations are
obtained for steady-state and uniform flow. The effect of transient flow
conditions on transport is discussed. Throughout the paper we refer to
experimental and numerical data that confirm or contradict results
from stochastic flow and transport equations.

TO MANAGE GROUNDWATER QUALITY in response to land
use and the widespread application of chemicals, the

field scale can be considered the elementary manage-
ment unit. Lateral variations in solute fluxes between
different fields due to differences in management (e.g.,
land use), climatic conditions, and soil characteristics are
important. Several studies have revealed that soil hy-
draulic properties can vary considerably within a field
(Jury, 1985) as well. This leads to an effective redis-
tribution of uniform water and solute fluxes at the soil
surface and considerable variation of subsurface water
and solute fluxes within a field (Biggar and Nielsen,
1976). Therefore, upscaling procedures are required to
derive effective parameters describing the system’s
behavior and average fluxes at the field scale. Effective
parameters are parameters that lump the system sub-
scale heterogeneity and describe its behavior at a larger

scale (Grayson and Blöschl, 2000; Harter and Hopmans,
2004). The upscaling problem, which exists at every
scale, can be solved in two ways. In the so-called “scale
way” approach (Vogel and Roth, 2003), the spatial ar-
rangement of hydrologically relevant structures is ex-
plicitly considered in a small-scale process model. The
predicted processes and variables at the smaller scale
are then averaged, and effective parameters that predict
the spatially averaged processes and variables at the
larger scale are derived. Depending on the structure
of the medium, the model type that is used to describe
the process at the larger scale may be different from the
smaller scale process model. In another approach,
the average system’s behavior is monitored at a larger
scale and model parameters are derived using in-
verse modeling.

Reviews of transport models, their relation to soil
structure, and their conceptualization of the transport
process structure can be found in, for example, Feyen
et al. (1998) and van Dam et al. (2004). The lateral av-
eraging scale is generally assumed to be much larger
than the scale of the heterogeneities, so the laterally
averaged water flow process is uniform and predomi-
nantly vertical in the vadose zone. Since the scale of the
solute application area is generally much larger than the
scale of the heterogeneities, the field-scale averaged
solute transport process can still be represented by a
one-dimensional process. Despite the existence of a
variety of other model concepts, the one-dimensional
convection–dispersion equation (CDE) is often used to
predict field-scale leaching of surface-applied chemicals
through the vadose zone toward the groundwater, such
as for pesticide registration (FOCUS, 2000; Tiktak et al.,
2004). The predicted leachedmass fraction of substances
is sensitive to the dispersion parameter of the CDE,
which lumps the effect of smaller scale transport velocity
variations on solute spreading (Boesten, 2004). There-
fore, the relation between smaller scale spatial vari-
ability in soil hydraulic properties and the dispersion
parameter is important. Such a relation may be derived
by characterizing the three-dimensional smaller scale
structure of soil properties in a fully deterministic way
and modeling three-dimensional flow and transport pro-
cesses (Kasteel et al., 2000). As an alternative, the spa-
tial variability of soil properties may be characterized in
a stochastic or geostatistical sense, and stochastic three-
dimensional flow and transport equations may be solved
to upscale local-scale processes and parameterize a
field-scale one-dimensional CDE.

Although it is common practice to predict field-scale
transport and nonlinear reaction processes using a
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CDE that is parameterized on the basis of inert tracer
experiments, it is nevertheless trivial that the spatial
average of a local nonlinear process is different from
its prediction using the averaged concentrations in the
nonlinear process equation. For nonlinear local trans-
port processes (e.g., nonlinear sorption), the statistical
distribution of local-scale concentrations is required to
upscale the process. A stream tube model (STM) that
represents the field by a set of vertical soil columns in
which one-dimensional convective–dispersive transport
takes place, and which is parameterized by a dis-
tribution of advection velocities and dispersion coeffi-
cients (e.g., Bresler and Dagan, 1981; Amoozegarfard
et al., 1982; Toride and Leij, 1996a, 1996b), is the sim-
plest tool to predict the distribution of local-scale con-
centrations. As a consequence, a STM is an attractive
model for upscaling nonlinear transport processes.
The distribution of stream tube velocities and the
stream tube dispersion, which quantifies the dilution
of local concentrations, are obviously linked to the
spatial variability of the hydraulic parameters and to
local-scale dispersion. Solutions of stochastic flow
and transport equations offer the possibility to make
this link and parameterize the STM on the basis of
spatial distributions of hydraulic and local-scale disper-
sion parameters.

Finally, the application of tomographic geophysical
techniques for obtaining three-dimensional spatiotem-
poral solute concentration data sets is emerging (e.g.,
Hubbard andRubin, 2004; Vereecken et al., 2004), which
raises the question of how these data sets can be used to
infer information about the spatial distribution of hy-
draulic properties. Again, solutions of stochastic flow
and transport and transport equations can be used to link
the structure of locally observed transport with the spa-
tial distribution of hydraulic properties.

Overviews of solutions of these stochastic flow and
transport equations are given by Dagan, (1989), Gelhar,
(1993), Zhang, (2002), and Rubin, (2003). The major
focus was on the prediction of expected or averaged
concentrations of inert solutes or solutes undergoing
linear reactions under steady-state and gravity-driven
flow conditions. Our objectives are to give an overview
of stochastic modeling of three-dimensional flow and
transport in the vadose zone, its application for the
parameterization of simpler one-dimensional transport
models, its limitations, and how stochastic modeling
agrees or disagrees with numerical and experimental
observations. We first review the prediction of field-
scale averaged concentrations of an inert solute and the
parameterization of a “field-scale” or “equivalent” one-
dimensional CDE. Next we discuss some recent and
new results related to the prediction of local concentra-
tion distributions and the parameterization of a STM.
The relevance of considering local concentration dis-
tributions for upscaling of nonlinear transport and
for inferring the structure of local hydraulic properties
is emphasized. In the final section, we discuss trans-
port in nonstationary flow fields and the effect of tran-
sient flow regimes on transport in a heterogeneous
soil profile.

PREDICTION OF FIELD-SCALE
AVERAGED CONCENTRATIONS
Particle Trajectory and Particle Travel

Time Variances
Transport of a nonreactive tracer in the three-

dimensional flow field q(x) is described using the CDE:

u(x)
]C(x,t)

]t
5 2q(x)=C(x,t) 1 = � [u(x)Dd(x)=C(x,t)]

[1]

where x (L) is the coordinate vector, t (T) is time, u(x)
is the volumetric water content, C(x,t) (M L23) is the
solute resident concentration in the liquid phase, and
Dd(x) (L2 T21) is the local-scale dispersion tensor. Un-
saturated flow is described by the Buckingham–Darcy
equation:

q(x) 5 2K(h; x)=[h(x) 2 x1] [2]

where q (LT21) is the Darcy flux vector, x1 is the vertical
coordinate (positive downward), h (L) is the matric
head, and K(h;x) (L T21) is the hydraulic conductivity
(assumed isotropic). The matric head is obtained by
solving Richards’ equation:

]u(h; x)
]t

5 = � {K(h; x)[=h(x) 2 x1]} [3]

The soil hydraulic functions, u(h;x) and K(h;x) vary
in space. The deterministic spatial distribution of the
hydraulic functions is generally not known, and their
parameters are stochastic. The spatial variation of these
parameters is expressed in a geostatistical framework
often based on two assumptions. First, it is assumed that
the hydraulic functions can be linearly scaled to refer-
ence functions K*(h*) and u*(h*) (Warrick et al., 1977;
Hopmans, 1987; Vogel et al., 1991):

K(h; x) 5 aK(x)K*(h*) [4]

u(h; x) 5 au(x)u*(h*) [5]

h(x) 5 ah(x)h* [6]

where aK, au, and ah are the linear scaling factors. The
second assumption is that the scaling factors, or their
lognormal transforms, are represented by second-order
stationary Gaussian random fields (i.e., the expected
value and the two-point covariance of the random vari-
able) and are defined and translation invariant.

^y(x)& 5 ^y(x9)& [ Y [7]

^(y(x) 2 Y)(y(x 1 h)� Y)& [ ^(y(x9) 2 Y)

(y(x9 1 h) 2 Y)& [ Cyy(h) [8]

where ^y& represents the expected value of the random
variable y in all realizations of the random space func-
tion, and Cyy(h) is the two-point spatial covariance for a
lag distance h.
Because of the stochastic scaling factors, the depen-

dent variables of the flow and transport equations (u, h,
q, C) are stochastic as well. By solving the stochastic
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flow (Eq. [3]) and transport (Eq. [1]) equations, the ex-
pected values and spatial (cross)covariances of the
dependent variables are derived from those of the hy-
draulic parameters. Therefore, a functional form of the
parameter covariance is assumed, which here is a non-
separable exponential covariance function:

Cyy(h) 5 s2
y expð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(h1/g1)
2
1 (h2/g2)

2
1 (h3/g3)

2
q Þ [9]

where sy
2 is the variance and gi (L) the spatial correlation

length in direction i.
To solve the stochastic transport equation, the spatial

variability of the water content and flow velocity must
first be characterized in geostatistical terms. Approxima-
tions of the variance and spatial covariance of u and q
are obtained using a perturbation of the flow equation.
Because of its mathematical convenience, the Gardner
exponential hydraulic conductivity function is often used:

K(h; x) 5 Ks(x)exp[a(x)h] 5 aK(x)KsG exp(aGh*)

5 aK(x)KsG exp[aGh/ah(x)] for h , 0

K(h; x) 5 aK(x)KsG for h . 0 [10]

where a(x) (L21) parameterizes the influence of the
capillary forces on the flow (Raats, 1976), aG is the geo-
metric mean of a(x), and KsG is the geometric mean of
the saturated hydraulic conductivity, Ks (L T21). Insert-
ing Eq. [10] in the Richards equation, Eq. [3] can be
written as

1
Ks(x)exp[a(x)h]

]u(h; x)
]t

5 =2h 1 =[ln Ks(x) 1 a(x)h]=h

2
][ln Ks(x) 1 a(x)h]

]x1
[11]

For uniform gravity-driven flow in an unbounded me-
dium with constant parameters KG and aG, the mean
matric head is constant in the flow domain, and the lin-
earized perturbation equations of matric head and flux
are given by (e.g., Harter et al., 1996)

=2h9 2
]f
]x1

2 aG^h&
]g
]x1

2 aG
]h9
]x1

5 0 [12]

qi9 5 2KG exp(aG^h&)
]h9
]x1

2 (f 1 gaG^h& 1 aGh9)
]x1

]x1

� �
[13]

where h9 (L) and qi9 (LT21) are the perturbations of the
matric head and local flux, respectively, and f 5 ln(aK)
is the perturbation of the log-transformed saturated hy-
draulic conductivity, and g5 ln(1/ah) is the perturbation
of the log-transformed a(x) parameter. Multiplying the
linearized perturbation equations (Eq. [12] and [13]) by
a perturbation of a parameter or a variable and taking
the expectation, a set of coupled partial differential
equations (i.e., the moment equations) is obtained
(Zhang, 2002, p. 249–250). The moment equations relate
the (cross)covariance functions of the different stochastic
variables and parameters. For second-order stationary
variable and parameter fields (i.e., for a steady-state and

a gravity-driven flow field in an unbounded domain),
spectral methods offer a convenient way to solve the
moment equations. Using these closed-form solutions,
the spatial covariance of the water flux can be predicted
directly from the spatial covariance and cross covariance
of lnKs and 1/ah or ln(1/ah) (Yeh et al. (1985a, 1985b,
1985c; Russo, 1995a, 1995b; Harter et al., 1996).

To solve the stochastic transport equation, two differ-
ent approaches have been followed. In the first ap-
proach, the Eulerian approach, the transport equation is
perturbed and solved similarly to the flow equation. In
the second approach, the Lagrangian approach, the res-
ident and flux solute concentrations are interpreted as
probability distributions of the locations and of the ar-
rival times, respectively, of individual solute particles.
The transport equation then describes the probability
distribution of the location or arrival time of individual
solute particles. The location at time t of a particle that
was released at time t = 0 at point a,X(t;a) (L); the travel
time of a particle from an injection point a to a reference
surface perpendicular to the mean flow direction located
at x1, H (x1;a) (T); and the arrival time at location x of a
particle that was injected in a surface at a1, H (x;a1) (T)
are related to the pore water velocity, v(x) 5 q(x)/u(x)
(LT21) and a dispersive velocity fluctuation vd(t) (LT21)
due to local-scale dispersion as (Dagan, 1989 p. 277;
Dagan et al., 1992; Rubin and Ezzedine, 1997; Vander-
borght, 2001):

dX(t; a)
dt

5 v[X(t; a)] 1 vd(t) [14]

dH (x1; a)
dx1

5
1

v1[X(H ; a)] 1 vd1(H )
[15]

dH (x; a1)
da1

5
21

v1[X21(H ; x)] 1 vd1(H )
[16]

where X21(t;x) is the backward trajectory or the par-
ticle’s location at a time t before arriving at x:

dX21(t; x)
dt

5 2v[X21(t; x)]� vd(t) [17]

The temporal covariance Cvdivdi(t) (L
2 T22) of vd(t) is

related to the pore-scale dispersion tensor Dd as

Cvdivdi(t) 5 2Ddiid(t) [18]

where d(t) (T21) is the Dirac function.
Since v(x) and vd(t) are stochastic, the particle loca-

tions and travel times are stochastic as well. The cal-
culation of the particle locations and arrival times using
Eq. [14], [15], [16], and [17] is not straightforward be-
cause the particle trajectory along which the velocity
needs to be evaluated is not known. To solve this prob-
lem, the particle trajectory is approximated by the
expected trajectory (e.g., Dagan, 1989, p. 311) and a de-
viation that accounts for the displacement due to local-

scale dispersive velocities, xd(t) 5 #
t

0
vd(t9)dt9 (Fiori and

Dagan, 2000). Although more general expressions for
nonstationary transient velocity fields have been devel-
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oped (see the section below on transport in nonstation-
ary velocity fields), the further derivation largely sim-
plifies when second-order stationary and steady velocity
fields are assumed. Then, the expected trajectory and
travel or arrival time (using a first-order Taylor ex-
pansion of Eq. [15] and [16]) can be written as:

^X(t; a)& 5 a1 ^v&t ; ^X21(t; x)& 5 x 2 ^v&t ;

^H (x; a1)& 5 ^H (x1; a)& »
x1 2 a1
^v1&

[19]

where ^v&, the expected velocity, is constant in space and
time. The first-order approximations of the particle
trajectory X9 and travel time H 9 deviations from their
expected values are obtained after introducing Eq. [19]
into Eq. [14] and [15] and using a first-order Taylor
expansion of Eq. [15]:

dX9(t)
dt

» v9[^v&t 1 xd(t)] 1 vd(t) [20]

dH 9(x1; a)
dx1

» 2
v19 ^v& x1

^v1&
1 xdð x1

^v1&Þ
h i

1 vd1
x1
^v1&

h i
^v1&

2 [21]

where v9(x) is the deviation of the velocity at point x
from its expected value. To simplify the notation, the
injection point coordinate a was omitted. Similar equa-
tions can be written for the backward trajectories and
arrival times. Using Eq. [20], the particle location vari-
ances at time t, s2

xixj
(t) (L2), are related to velocity field

moments as

s2
xixj

(t) [ ^Xi9(t)Xj9(t)& » #
0

t

#
0

t

^vi9[^v&t9 1 xd(t9)]vj9[^v&t0

1 xd(t0)]&dt0dt9 1 #
0

t

#
0

t

^vdi(t9)vdj(t0)&dt0dt9 [22]

From Eq. [20] and [21], it follows that the particle
location and travel time, s2

H (x1) (L2), variances are
related as

s2
H (x1) [ ^[H (x1)2^H (x1)&]

2
& » s2

x1xj
ð x1

^v1&Þ/^v1&
2 [23]

A straightforward derivation of the variances of the
backward particle locations and arrival leads to identical
relations. Therefore, we will not distinguish further be-
tween forward and backward trajectories and between
arrival and travel times.

Equation [22] can be written in terms of the spectrum
of the velocity perturbations, Svivj(k) (L

5 T22), which is
the Fourier transform of the velocity covariance
function Cvivj(x) (L

2 T22). After using Eq. [23], this re-
sults in:

s2
H (x1) »

2x1Dd11

^v1&
3 1

2

^v1&
2 #
0

x1/v1

#
0

t

#
k

exp[(ik1^v1&

� kT �Dd � k)(t 2 t9)]Sv1v1 (k)dkdt9dt [24]

where k (L21) is the wave number vector and i is the
imaginary number. To arrive at Eq. [24], the second-
order stationary velocity field was represented by its

Fourier transform, and the characteristic function of the
Gaussian random variable xd(t) 2 xd(t9) with variance–

covariance matrixOxd(t) � xd(t9)
5 2Dd|(t 2 t9)| was used.

Equations [23] and [24] directly link the moments of the
particle locations and travel times to the spatial vari-
ability of the hydraulic properties through the velocity
spectrum and the local-scale dispersion, Dd.
In a second-order stationary velocity field, the mo-

ments of the particle locations and arrival times do not
depend on the locations of the injection and observation
points in the injection and observation surfaces (i.e., a
and x do not appear in the right hand sides of Eq. [24]).
The moments of the particle location and travel or
arrival time probability density functions (pdf) are then
related to the spatial and temporal moments of expected
concentrations and solute fluxes, respectively:

s2
xixj

(t) 5 #xixj^c(x; t)&dx

2 #xi^c(x; t)&dx#xj^c(x; t)&dx 2 s2
xixj

(t 5 0) [25]

s2
H (x; a1) 5 #t2^cf(x; t)&dt 2 ð#t^cf(x; t)&dtÞ2

2 s2
H (x1 5 a1; a1) [26]

where

c(x; t) 5 C(x; t)/#C(x; t)dx [27]

cf(x; t) 5 Js(x; t)/#Js(x; t)dt [28]

and s2
xixj

(t 5 0) and sH
2(x1 5 a1;a1) are the spatial and

temporal moments of the initial solute plume and of the
solute injection at the injection surface, Js (M L22 T21) is
the solute flux, and c and cf the normalized resident and
flux concentration.
The expected resident concentration or solute flux at a

certain point x represent the average of the concentra-
tions or fluxes at this point in all realizations of the velocity
field, that is, the ensemble average. If there exists a set of
points x with the same ensemble average of concentra-
tions or solute fluxes, then the ensemble average can be
exchanged with the average of the concentrations and
fluxes in this set of points in one realization of the ve-
locity field, that is, the spatial average. The equivalence
between the ensemble and spatial averages is also called
“ergodicity”. For awide initial solute slaborwide injection
surface (i.e.,muchwider than the spatial correlation of the
hydraulic conductivity field), the expected concentration
and solute flux are independent of the location in a hori-
zontal reference surface (i.e., perpendicular to mean flow
direction): ^C(x,t)& 5 ^C(x1,t)& and ^Js(x,t)& 5 ^Js(x1,t)&. As
a consequence, the expected concentrations or fluxes then
represent averaged concentrations or fluxes in horizontal
reference surfaces. The same holds for the spatial and
temporal moments of expected and horizontally averaged
concentrations and fluxes.

One-Dimensional Equivalent
Convection–Dispersion Equation

The spatial and temporal moments of the ensemble
averaged or expected concentrations or fluxes can be
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used to parameterize an equivalent one-dimensional
CDE that predicts distributions and breakthroughs of
horizontally averaged concentrations and solute fluxes
with the same spatial and temporal moments:

]^C(x1,t)&
]t

5 2^v1&
]^C(x1,t)&

]x1
1 leq^v1&

]2^C(x1,t)&
]x2

1

[29]

where leq (L) is the equivalent dispersivity. Replacing
^C(x1,t)& by ^Js(x1,t)& or ^Cf(x1,t)& [ ^Js(x1,t)&/^q1&, solute
fluxes or flux concentrations are predicted by Eq. [29].
The equivalent dispersivity is related to the travel
distance and travel time variances (Jury and Sposito,
1985) as

leq(t) 5
s2

x1xj
(t)

2t^v1&
[30]

leq(x1) 5
^v1&

2
s2

H (x1; a1)
2x1

[31]

The equivalent dispersivity leq is a measure of the
spreading of a field-scale averaged concentration depth
profile or breakthrough curve (BTC) due to local-
scale dispersion and spatial variations in local advection
velocities.

Through Eq. [23], [24], [30], and [31], which are ob-
tained using first-order solutions of three-dimensional
stochastic flow and transport equations, leq is linked to
the spatial variability of the velocity field, the hydraulic
parameter fields, and the local-scale dispersion. From
Eq. [30] and [31] it follows that leq is a function of time
or travel distance, whereas the one-dimensional equiv-
alent CDE (Eq. [29]), presumes a constant leq. In Fig. 1,
the change of leq 2 ld1 (ld1 5 Dd11/^v1&) (i.e., the part
of the equivalent dispersivity that results from spatial
variations of local advection velocities) with travel dis-
tance predicted by Eq. [24] and [31] is shown for satu-
rated flow conditions and different structures of the
hydraulic conductivity. For small travel distances, rela-
tive to the correlation scale of lnaK in the vertical direc-
tion, g1, leq 2 ld1 increases linearly with x1, and this rate

of increase becomes smaller with increasing x1. For large
travel distances, again relative to g1, leq 2 ld1 and leq

reach an asymptotic value. This asymptotic value is
reached after a shorter travel distance, relative to g1 for
structures that are more elongated in the direction of
the mean flow (g2,3 , g1), than for structures which are
more elongated in the horizontal direction (g2,3 . g1)
(Russo, 1995a).

Since the travel distance in soils is generally relatively
small (1–10 m), the asymptotic regime is rarely reached.
The equivalent CDE (Eq. [29]) must then be interpreted
as a tool to predict a BTC or concentration depth profile
at a certain depth or time assuming a hydrodynamically
uniform soil profile and using an equivalent dispersivity
for this travel time or distance. If predictions for other
travel times or depths are required, the one-dimensional
CDE must be reparameterized. Using first-order ap-
proximate solutions of stochastic flow and transport
equations, this reparameterization is based on the three-
dimensional structure of the hydraulic parameter field.
However, the assumption of a hydrodynamically uni-
form profile in the one-dimensional CDE is inconsistent
with the large vertical gradient in biological and chemi-
cal soil properties in the upper 1 m of the soil profile. To
what extend this inconsistency leads to incorrect pre-
dictions of the fate of substances undergoing chemical
and biological reactions requires further investigation.

The effect of the local-scale dispersion Dd on the sol-
ute spreading caused by spatial variability of advection
velocities (i.e., leq 2 ld1) is interesting. With increasing
Dd, leq 2 ld1 decreases (Fiori, 1996). This decrease is
caused by local-scale mixing that reduces the impact of
local-scale velocity variations on the spreading of a sol-
ute plume. However, the spatial scale of dispersive mix-
ing is considerably smaller than the scale of advection
velocity fluctuations, so the impact of Dd on the travel
time and particle location moments is small. The ratio of
these two scales is defined by a Peclet number:

Pe 5 g^v1&/Dd [32]

In unsaturated media, the variance and spatial cor-
relation of the velocity depend on the average degree
of saturation. When lnaK and lnah are negatively cor-
related (e.g., in a Miller–Miller similar medium), the
unsaturated conductivity decreases more rapidly with
increasing |h| for large than for small Ks. This leads to a
crossing of hydraulic conductivity curves at a critical
matric head |hcrit|. For 0 , |h| , |hcrit| the variance of the
unsaturated conductivity decreases with increasing |h|,
whereas the opposite occurs for |hcrit| , |h|. The location
of the more conductive regions and the regions with
higher flow velocities also switch when the critical matric
head is passed (Roth, 1995). For non- or positively cor-
related lnaK and lnah, the variance of the hydraulic
conductivity monotonically increases with increasing |h|.
Besides an effect on the variance of the unsaturated
conductivities, the degree of saturation also influences
the structure of the flow field. Under drier condi-
tions, flow is more channeled into “preferential flow
paths” that persist for a longer distance than under
wetter conditions.

Fig. 1. Normalized equivalent dispersivity due to spatial variability of
local flow velocity, (leq 2 ldL)/(s2

fg1), as a function of normalized
travel distance, x1/g1, in media with isotropic structures (g1 5 g2 5
g3), elongated structures parallel (g1/g2,3 5 5,) and perpendicular
(g1/g2,3 5 0.2) to the direction of the mean flow. Full lines: g1/ldL 5
500. Dashed line: g1/ldL 5 50.
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Because of these effects of the mean matric head on
the variance of the conductivity and the structure of the
flow field, which are related to the mean degree of sat-
uration or themean flow rate, leq2ld1 depends on these
mean state variables as well. An important consequence
is that leq must not be considered a material constant.
First-order approximate solutions of the flow and trans-
port equations are tools to express relations between
state variables, the spatial variance and covariance of the
hydraulic parameters, and leq, at least in a qualitative
sense (e.g., Russo, 1995a, 1995b; Harter et al., 1996). For
negatively correlated lnaK and lnah, leq 2 ld1 reaches a
minimumwhen |^h&| reaches |hcrit| and leq2 ld1 increases
with increasing difference between |^h&| and |hcrit|. For
non- or positively correlated lnaK and lnah, leq 2 ld1

increases with |^h&|. The travel times or distances before
the asymptotic regime is reached also increase with in-
creasing |^h&|. Numerical simulations of flow and trans-
port in heterogeneous media (Roth, 1995; Harter and
Yeh, 1996, 1998; Roth and Hammel, 1996; Birkholzer
and Tsang, 1997; Hammel and Roth, 1998; Cirpka and
Kitanidis, 2002; Khaleel et al., 2002) corroborate this
behavior of leq 2 ld1, with the degree of saturation pre-
dicted by first-order approximations. However, due to
the strong nonlinearity of the hydraulic conductivity, the
variance and the importance of higher order moments
of the unsaturated hydraulic conductivity distributions
strongly increase with increasing dryness (de Rooij et al.,
2004) so that first-order approximations become invalid.
But, the average flow rate is very small for dry
conditions, so the spatial scales of diffusive mixing and
advection velocity fluctuations become similar; that is,
the Peclet number (Eq. [32]) decreases. Therefore, local-
scale diffusive fluxes may effectively smooth out con-
centration differences between regions with different
velocities and limit spreading caused by advection ve-
locity variability. As a consequence, the increase of leq2
ld1 with increasing dryness may be considerably reduced
(Cirpka and Kitanidis, 2002).

Although the relation between the spatial variability
of hydraulic properties and solute spreading in unsatu-
rated soils has been the topic of several studies, the
theoretical and numerical studies largely outnumber
studies providing direct experimental support of these
relations. Reviews of tracer experiments in soils (Beven
et al., 1993; Vanderborght et al., 2001) provide indirect
evidence that flow and transport in soils is indeed a
spatially variable process that leads to an increase of
equivalent dispersivity with travel distance. Also the
effect of the flow rate or degree of saturation on leq has
been demonstrated (Forrer et al., 1999; Vanderborght
et al., 2001). However, except for tracer experiments in
unsaturated heterogeneously packed sand containers
(Wildenschild and Jensen, 1999; Ursino et al., 2001b),
leq was not found to increase with decreasing flow rate
or decreasing degree of saturation. This suggests that
leaching experiments were mostly performed using
relatively high flow rates under relatively wet condi-
tions, that is, in the range where, for negatively cor-
related lnaK and lnah, leq increases with saturation or
flow rate.

The difficulty of characterizing the variance and spa-
tial structure of the hydraulic conductivity may be the
principal reason for the scarcity of direct experimental
links between observed transport and spatial variability
of soil hydraulic properties. The spatial variability of the
hydraulic properties may vary considerably depending
on the experimental method used to determine these
properties (Mallants et al., 1997) and the method used to
derive the parameters of the spatial covariograms (Ünlu
et al., 1990). The linear scaling approach as presented in
Eq. [4], [5], and [6] may not completely represent the
spatial variability of the unsaturated hydraulic functions
(Deurer et al., 2000). The estimation of the spatial cor-
relation length may be problematic when the scale of the
spatial correlation and the distance between soil samples
is of the same order of magnitude. This is especially so
for the correlation length in the vertical direction which
is in the order of 1021 m (Russo and Bouton, 1992;
Rockhold et al., 1996; Russo et al., 1997). It should be
noted that field sites where spatial correlation lengths
of hydraulic properties could be derived are located
in more arid regions and often in poorly developed
soils with a coarser texture (Entisols) (Ünlü et al., 1990;
Russo and Bouton, 1992; White and Sully, 1992;
Rockhold et al., 1996). However, a similar number of
studies show variograms of hydraulic parameters with a
large nugget, indicating that no spatial structure could
be identified (Mohanty et al., 1994; Mallants et al., 1996;
Kasteel, 1997; Vereecken et al., 1997; Hammel et al.,
1999; Deurer et al., 2000).
Since the spatial correlation of the hydraulic conduc-

tivity is difficult to determine, especially in the vertical
direction of the mean flow, an indirect estimation of this
correlation scale from the scaling of leq with travel dis-
tance seems interesting. By observing the scaling of leq,
derived from, for example, BTCs or concentration pro-
files at different depths or times, information about the
structures of the flow and hydraulic parameters fields
may be inferred inversely (Russo, 1997). Vanderborght
et al. (1997) compared leq derived from transport simu-
lations in generated heterogeneous conductivity fields
with leq derived from measured field-scale averaged
BTCs. On the basis of this comparison they identified
an experimental method that yields relevant informa-
tion about the variability of unsaturated hydraulic
conductivity.
Besides problems with inferring statistical parameters

of soil hydraulic properties, second-order stationary
Gaussian fields may not be adequate to characterize the
spatial variability of hydraulic properties in soils that are
layered systems that developed as a result of a long-term
leaching process. Hammel et al. (1999) investigated the
effect of soil layering and wedges on transect-scale
transport. The effect of larger scale structures was found
to be relatively localized and depends on their size and
hydraulic properties that define their potential to divert
flow laterally. Another aspect is the connectivity of re-
gions with higher hydraulic conductivity. Deurer et al.
(2001) attributed the rapid leaching of the tracer in the
subsoil to a high connectivity and convergence of high
conductivity zones in the subsoil layer. This structure
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cannot be described by a Gaussian random field, which
assumes that high and low conductivity zones are
equally connected and that extreme values are not con-
nected (Gomez-Hernandez and Wen, 1998). A high
connectivity of high conductivity zones in soils can be
understood as the result of long-term leaching, which
plays a crucial role in the development of soil profiles.
Also in Gaussian random conductivity fields, a network
of connected high flow regions develops. When soil
properties are changed by long-term leaching along this
connected flow pattern, a connected pattern of soil
properties develops. The effect of these connected, high-
conductivity regions on transport under saturated con-
ditions was shown to be substantial and to lead to an
early breakthrough and a long tailing (Wen and Gomez-
Hernandez, 1998; Zinn and Harvey, 2003). The effect
of the connectivity properties of the medium on un-
saturated flow was investigated by (Neuweiler and
Cirpka, 2005).

PREDICTION OF LOCAL-SCALE
CONCENTRATIONS

Local concentration predictions require consideration
for basically three reasons. First, for risk assessment, the
probability of exceeding a critical threshold concentra-
tion may be more relevant than the average or expected
concentration. Second, chemical equilibria and reaction
rates that depend in a nonlinear way on local concen-
trations cannot be simply scaled up by using expected or
spatially averaged local concentrations in the equilibria
and reaction rate equations. Finally, information about
the spatial distribution of local concentrations may be
used to infer the spatial structure of the hydraulic pa-
rameter fields. In this section, we define parameters that
characterize BTCs and the spatial covariance of local
concentrations and relate these parameters to the spatial
covariance of the velocity field and local-scale transport
parameters. Most of the results have been obtained for
saturated steady-state flow conditions. However, if the
spatial covariance of the flow field can be determined
for unsaturated flow conditions (i.e., for steady-state and
gravity driven flow), these results can be directly trans-
ferred to unsaturated flow conditions.

Prediction of local-scale concentrations basically comes
down to the prediction of the dilution caused by local
dispersive fluxes. How the dilution process can be cou-
pled to the local-scale dispersion and the spatial struc-
ture of the hydraulic conductivity field was the topic of
several studies on saturated zone transport (Kapoor and
Gelhar, 1994; Kitanidis, 1994; Kapoor and Kitanidis,
1996, 1998; Zhang and Neuman, 1996; Dagan and Fiori,
1997; Andricevic, 1998; Fiori and Dagan, 1999, 2000;
Pannone and Kitanidis, 1999). In heterogeneous velocity
fields, the solute plume is distorted and the internal
plume surface, across which local-scale dispersion can
take place, is much larger than in a homogeneous flow
field. As a consequence, the dilution is considerably
larger in a heterogeneous than in a homogeneous flow
field. When the local-scale dispersion process cannot
keep up with smoothing out lateral concentration dif-

ferences generated by the heterogeneous advection
velocity field, the dilution will be smaller than the dilu-
tion that is predicted in a homogeneous flow field using
an equivalent dispersion coefficient that predicts the
spreading of a tracer plume. Therefore, neither the local
scale nor the equivalent dispersion coefficient can be
used to predict the dilution process in a heterogeneous
flow field.

Stream Tube Model Parameters and
Their Prediction

Several parameters have been proposed to quantify
dilution; for example, Kitanidis (1994) introduced the
dilution coefficient and reactor ratio. The STM, which
represents the complex three-dimensional flow field by
a bundle of one-dimensional stream tubes, is an attrac-
tive alternative tool to predict both spreading and dilu-
tion in a heterogeneous flow fields. In the STM, dilution
is quantified by a stream tube dispersivity, ls (Cirpka
and Kitanidis, 2000; Vanderborght and Vereecken, 2002).
The locally observed breakthrough in a given realiza-
tion of the velocity field, which is actually the result of
a three-dimensional transport process, is interpreted
to be the result of an equivalent one-dimensional con-
vection dispersion process along a one-dimensional
stream tube:

]C(j,t)
]t

¼ 2vs(x)
]C(j,t)

]j
1 vs(x)ls(x)

]2C(j,t)
]j2

[33]

where vs(x) (L T21) and ls(x) (L) are the stream tube
velocity and dispersivity, respectively, and j is the stream
tube coordinate. When the stream tube is assumed to be
a straight tube, j corresponds with x1. Since the locally
observed BTCs are spatially variable or stochastic, it is
obvious that also the parameters vs(x) and ls(x) are
stochastic. The parameterization of the STM therefore
boils down to defining the probability distributions of
vs(x) and ls(x). Using first-order solutions of stochastic
three-dimensional flow and transport equations, the
variance of vs(x) and the expected value of ls(x)
are derived.

Similar to the equivalent dispersivity, leq, the stream
tube dispersivity ls is defined in terms of the variance of
the solute arrival time at a certain point in a given reali-
zation of the velocity field sH

2(x)|v(x) (T2):

ls(x) 5
s2

H (x)|v(x)v
2
s (x)

2x1
[34]

In contrast to sH
2(x), which represents the variance of

arrival times at point x in all realizations of the velocity
field and quantifies the spreading of a spatially averaged
BTC, sH

2(x)|v(x) represents the variance of arrival times
at point x in one realization of the velocity field and
quantifies the spreading of a local BTC.

The expected variance of arrival times at a certain
point in a given realization of the velocity field,
^sH

2(x)|v(x)& is derived from the arrival time variance at a
reference surface, sH

2(x1) and the covariance of the ar-
rival times of two different particles that cross the refer-
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ence surface in a given realization of the velocity field at
the same location x, sH H (x,x) (T2):

^s2
H (x)|v(x)& ¼ s2

H (x1)� sH H (x; x) [35]

A derivation of Eq. [35] is given in the Appendix.
The two-particle arrival time covariance function

sH H (x,y) represents the covariance of arrival times of
particles at locations x and y on a reference plane. It is
predicted from the advection velocity perturbations v9,
and the random displacements of the two particles due
to local-scale dispersion, xd(t) and yd(t), in a similar way
as the travel time variance sH

2(x1) using a first-order ap-
proximation of the particle arrival time (Fiori andDagan,
2000; Vanderborght and Vereecken, 2002):

sH H (x,y) »
1

^v1&
2 #
0

x1/^v1&

#
0

y1/^v1&

^v19[x 2 ^v1&t � xd(t)]

v19 [y 2 ^v1&t9 2 yd(t9)]& dt9dt [36]

Similar to the travel time variance, Eq. [36] is written
in terms of the velocity perturbation spectrum, Sv1v1(k),
and the local-scale dispersion tensor, Dd:

sH H (x,y) »
1

^v1&
2 #
0

x1/^v1&

#
0

y1/^v1&

#
k

exp[ik1(^v1&t 2 ^v1&t9) 1 ik(x� y)

2 kTDdk(t 1 t9)]Sv1v1 (k)dkdt9dt [37]

Here, the characteristic function of the Gaussian ran-
dom variable xd(t) 2 yd(t9) with a variance covariance
matrix, �xd(t)�yd(t9), which by virtue of the independence
between xd(t) and yd(t9), equals the sum of the covari-
ance matrices of xd(t) and yd(t9), 2Dd(t 1 t9) is used. It
should be noted that in the case of purely advective
transport, the two-particle arrival time covariance for
x 5 y, sH H (x,x), is equal to the arrival time variance at a
reference surface, sH

2(x1). Inserting Eq. [37] into Eq. [35]
and [34] leads to the following first-order approximate
prediction of the stream tube dispersivity (Vanderborght
et al., 2005):

^ls(x)& » leq(x1)�
1
2x1

#
0

x1/v1

#
0

x1/v1

#
k

exp[ik1^v1&(t 2 t9)

2 kT �Dd � k(t 1 t9)]Sv1v1 (k)dkdtdt9 [38]

From Eq. [37] it follows that the first-order approxi-
mation of the two-particle travel time covariance func-
tion sH H (x,y) is proportional to the two-particle trajectory
covariance (see Eq. [15] in Fiori and Dagan (2000) and
Eq. [B5] in Fiori et al. (2002)). The first-order approxi-
mation of the stream tube dispersivity, which is defined
here in terms of the variance of the arrival time distri-
bution at a given location, is therefore similar to the first-
order approximation of an effective dispersion coeffi-
cient, which is defined in terms of the derivative with
respect to time of the second spatial moment of a point-
scale injected solute (Dentz et al., 2000; Cirpka, 2002).

In Fig. 2, the equivalent dispersivity, leq, and the
stream tube dispersivity, ls, derived from a flow and
transport simulation in a three-dimensional heteroge-
neous conductivity field are plotted together with first-

order predictions of leq and ls vs. travel distance from
the injection surface. For the considered heterogene-
ity, the first-order predictions correspond fairly well with
the dispersivities derived from the Monte-Carlo simula-
tions. Also stream tube dispersivities that were derived
from locally measured BTCs in a sand tank with known
heterogeneous structure could be reproduced using
first-order approximate predictions (Eq. [38]) (Jose
et al., 2004). This implies that the local-scale dispersion
coefficient may be inferred by fitting Eq. [38] to expe-
rimentally determined ls values (Vanderborght and
Vereecken, 2002; Jose et al., 2004). Figure 2 also illus-
trates that ls increases with travel distance but consid-
erably more slowly than leq, and is considerably larger
than ld, except for reference surfaces close to the injec-
tion surface. This reflects the difference of the dilution
and spreading processes and the larger dilution in het-
erogeneous flow fields compared with homogeneous
flow fields.
Cirpka and Kitanidis (2002) investigated the effect of

the degree of saturation on the stream tube dispersivity
in heterogeneous fields with a negative correlation be-
tween lnaK and lnah. They assumed a uniform local-scale
dispersion that did not depend on the flow rate or degree
of saturation. For small infiltration rates, ls and leq

converged to small values. Under these conditions, the
time scales of local diffusion and advection are similar,
so local variations in advection velocities are smoothed
out and the dilution and spreading processes occur at a
similar rate. The behavior of ls with increasing flow rate
and degree of saturation is more complex. At higher flow
rates, the time for local-scale diffusive lateral mixing
decreases, lowering ls, whereas the variability of the
flow field increases, increasing ls. How these effects
counterbalance each other depends on the heteroge-
neity of the hydraulic properties, the correlation be-
tween lnaK and lnah, and the relative importance of

Fig. 2. Variance of stream tube velocities, s2
vs
(red), and dispersivities

that characterize: the spreading of an averaged breakthrough curve,
equivalent dispersivity, leq (black), the spreading of locally
measured breakthrough curve, stream tube dispersivity, ls (blue),
and the pore-scale dispersivity ld (green), in reference planes at
different distances from the injection surface in an heterogeneous
aquifer with sf

2 5 1, g1 5 g2 5 5 m, g3 5 1 m, ldL 5 0.1 m, ldT 5

0.01 m. Thick lines are first-order predictions; symbols refer to
parameters derived from a numerical experiment in a realization of
the conductivity field.
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local-scale diffusion compared with hydrodynamic dis-
persion. Dye tracer patterns in a heterogeneous sand
tank for different leaching rates (Ursino et al., 2001a),
partly contradicted the numerical and theoretical results
of Cirpka and Kitanidis (2002). The dilution indices of
the dye patterns, which are similar measures for dilution
as ls, did not change considerably with decreasing flow
rate despite a large increase of the flow variability and
plume spreadingwith decreasing flow rate. This indicates
that the pore-scale mixing becomes less efficient (i.e., ld

decreases) with decreasing degree of saturation, due to
an increase in tortuosity for local-scale diffusion.

The variance of the stream tube velocities, s2
vs
(L2 T22)

is related to the two-particle arrival time covariance:

s2
vs
(x) » ^v1&

4
sH H (x,x)/x2

1 [39]

FromEq. [37] and [39] follows that s2
vs
(x) is constant in

a reference plane perpendicular to the mean flow direc-
tion. This implies that s2

vs
(x) represents the variance of

stream tube velocities observed in a reference plane in
one realization of the three-dimensional velocity field.
The stream tube velocity represents the average velocity
of the particles in a stream tube along their trajectory
from the injection surface to the observation point. Close
to the injection surface, s2

vs
equals the variance of the

pore water velocity, s2
v1
. Due to convergence and

divergence of stream lines and due to diffusive exchange
of solutes between different stream lines, the velocity of a
particle changes along its trajectory with a concurrent
decrease of s2

vs
with increasing travel distance (Fig. 2).

The decrease of s2
vs

with increasing travel distance is
often called “lateral mixing” (Flühler et al., 1996). How-
ever, also in the case of purely advective transport (i.e.,
without diffusive mixing and dilution), the lateral mixing
process is active and results from the three-dimensional
heterogeneous conductivity field, which leads to lateral
flow components and a convergence and divergence of
flow lines. Therefore, the notion of lateral mixing should
be decoupled from a dilution of local concentrations.

Since both s2
vs
and ls change with travel distance, the

STM should not be interpreted as an exact representa-
tion of the transport process, which implies the assump-
tion of no lateral exchange of solutes between different
stream tubes and a constant velocity in the stream tube.
As a consequence, the STM as it is used in this context
is not a tool to derive s2

vs
from the variability of the hy-

draulic conductivity and the water content (Dagan and
Bresler, 1979; Bresler and Dagan, 1981; Destouni, 1992)
or to predict the breakthrough of averaged solute con-
centrations at different depths, assuming that s2

vs
remains

constant with depth (Jury, 1982; Jury et al., 1986). It is
rather a tool to describe essential transport phenomena,
such as spreading and dilution at a certain observation
or prediction depth given that s2

vs
and ls are known for

that depth. First-order approximate solutions of the
stochastic flow and transport equations offer the pos-
sibility to derive s2

vs
and ls and their change with depth

from the spatial structure of the hydraulic conductivity
field and the local-scale dispersion. By changing s2

vs
and ls with depth or travel distance, the lateral mixing

between stream tubes and the change of particle
velocities along their trajectories can be implicitly ac-
counted for.

Application of a Stream Tube Model to Predict
Field-Scale Nonlinear Transport

In general, the STM can be formulated as

^C(x,t)& 5 #
P,C0

C(x1,t;C0,P)pdf(C0,P)dC0dP [40]

where C(x1,t;C0,P) is the concentration at distance x1
from the injection surface and time t predicted by the
transport and reaction equations in a one-dimensional
stream tubes for boundary condition C0 and a set of
transport and reaction parameters P (i.e., including the
stream tube velocity and dispersivity), and pdf(C0,P) is
the pdf of the parameter set P and the boundary con-
dition C0. Because the numerical solution of transport
and reaction equations in a set of one-dimensional
stream tubes is computationally less demanding than
solving the three-dimensional transport and reaction
equations, the STM may be used to predict field-scale
reactive transport. Often, purely advective transport
is assumed. For uniform chemical rate parameters the
general STM then simplifies to (e.g., Dagan and
Cvetkovic, 1996)

^C(x,t)& 5 #
H

C(x1,t; H,C0,Pr)pdf(H,x1)dH [41]

where H = x1/vs is the advective travel time along the
stream line, Pr is the parameter set of the reaction
equations assumed to be constant in space, and pdf(H ,x1)
is the travel time pdf. For certain reaction types, closed-
form solutions of C(x1,t;H ,C0,Pr) can be used to solve
Eq. [41], assuming a certain functional form of pdf(H ,x1).
For purely advective transport, the particle arrival time
variance sH

2 is identical to the two-particle arrival time
covariance sH H (x,y) and related to the stream tube ve-
locity variance by Eq. [39]. In another approach, a
numerical solution of the one-dimensional advective-
reaction equations in Eq. [41] is used. For instance,
Finkel et al. (1999) and Malmstrom et al. (2004) imple-
mented geochemical models in the stream tube approach
to model multicomponent reactions and transport in
heterogeneous flow fields.

However, the effect of local-scale mixing plays an im-
portant role for certain reaction types. A typical exam-
ple is a bimolecular reaction between equally mobile
interacting compounds. In that case, the mixing between
the two compounds can only take place through local-
scale dispersion processes. Cirpka and Kitanidis (2000)
and Ginn (2001) showed that a stream tube dispersivity,
ls, must be included in the STM to model such reaction
rates in a heterogeneous flow field.

To illustrate the difference between solute spreading
and dilution of local concentrations and the consequence
of this difference for the upscaling of nonlinear reaction
processes in heterogeneous media, the leaching of
substances undergoing a nonlinear sorption character-
ized by a Freundlich sorption isotherm (S5 kfCnf, where
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S is the sorbed mass concentration [M M21]) was simu-
lated. The two-dimensional flow and transport equations
were numerically solved in 10 realizations of a two-
dimensional heterogeneous conductivity field using the
TRACE (Vereecken et al., 1994) and PARTRACE
(Neuendorf, 1997) codes. Figure 3 shows the concen-
tration patterns of the inert and reactive tracers. The
fronts of the nonlinearly sorbing substances show more
pronounced fingers than the fronts of the inert tracer,
and this fingering gets more pronounced with increasing
nonlinearity. This suggests that spatial variability of
the water flow has a larger impact on the transport of
nonlinearly sorbing than on linearly sorbing tracers.
Simulated and predictedBTCs of the reactive substances
at two different depths in the heterogeneous flow field
are shown in Fig. 4. Breakthrough curves are predicted
by an equivalent field-scale CDE and by an advective
STM. In the former, the spreading of an inert tracer is
parameterized by leq, and the sorption is calculated from

the field-scale averaged concentrations and the nonlin-
ear sorption isotherm:

ð1 1
nfkfrb

^u&
^C&n

f21Þ ]^C&
]t

5 2^v1&
]^C&
]x1

1 ^v1&leq
]2^C&
]x1

[42]

where rb (M L23) is the bulk density. The equivalent
dispersivity leq was derived for two observation depths
using a first-order approximation of the stochastic flow
and transport equations (Eq. [24] and [31]).
In the advective STM, the breakthrough in a stream

tube at depth x1 is calculated using the method of
characteristics:

C(t; x1,H ,C0,Pr) 5 H[t 2 tp(x1,H ,C0,Pr)]

ð tH � 1Þ u

nfkfrb

� � 1
1 2 nf

[43]

where tp (x1;H,C0,Pr) is the time when the solute front
arrives at depth x1 in a stream tube with travel time H ,
andH is the Heaviside function. The depth of the solute
front at a certain time, x1p(t;H,C0,Pr), is derived from a
mass balance equation:

M0ðH Þ ¼ #
0

x1p(t;H ,C0,Pr)

uC(x19; t,H ,Pr) 1 rbC(x19; t,H ,Pr)
nf dx19 [44]

where M0(H ) (M L22) is the solute mass per unit area
injected in a stream tube with travel time H and

C(x19; t,H ,Pr) 5 ð tx1x19H
2 1Þ u

nfkfrb

" # 1
1�nf

is the concentration depth profile in the stream tube at
time t. For a uniform boundary condition (i.e., a uniform
input concentration C0 and application time t0 for all
stream tubes), the mass applied to a stream tube is pro-
portional to the water flux in the stream tube. Assuming
that the water content is the same in all stream tubes, the
mass applied to a stream tube is related to the stream
tube travel time as

M0(H ) 5 C0t0^q1&^H &/H [45]

where ^q1& and ^H & are the average water flux and travel
time, respectively. The depth of the solute front at
time t in a stream tube with travel time H is obtained
by inserting Eq. [45] into Eq. [44] and solving it for
x1p(t;H,C0,Pr). By inverting the function x1p(t;H,C0,Pr), the
arrival time of the solute front, tp(x1;H,C0,Pr) is obtained.
The breakthrough in a stream tube is calculated using
Eq. [43] and the field-scale averaged breakthrough using
Eq. [41]. A lognormal pdf was used to represent
pdf(H ;x1) and the stream tube travel time variance at a
certain depth was derived from the first-order approxi-
mate two-particle travel time covariance.
The equivalent field-scale CDE clearly underestimates

the arrival of the solute front (Fig. 4), especially when the
degree of nonlinearity of the sorption isotherm is large
(small nf ). In a heterogeneous flow field, the propagation
of the averaged concentration at a certain depth rep-

Fig. 3. Maps of simulated concentrations distributions in a heteroge-
neous two-dimensional saturated flow field (sf

2 5 1, g1 5 g2 5
10 cm, ldL 5 0.2 cm, ldT 5 0.02 cm, us 5 0.5) of three different
tracers: inert tracer (top panel), a nonlinearly sorbing reactive
tracer (kf 5 1, nf 5 0.67), and a strongly nonlinearly sorbing tracer
(kf 5 0.6, nf 5 0.3). Concentration maps are shown when the center
of mass of the plume is at 40 cm below the injection surface (x1 5
60 cm in the plots).
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resents the average propagation of local concentrations.
For a nonlinear and concave sorption isotherm (nf , 1)
the local concentration propagation velocity increases
with increasing concentration. The propagation of the
average concentration is therefore considerably larger in
a heterogeneous than in a homogeneous flow field. The
advective STM performs much better since the propa-
gation velocity is first calculated in the individual stream
tubes before the field-scale averaged concentration is
calculated. However, since local-scale mixing is not con-
sidered in the STM, the propagation velocities may be
overestimated when local concentrations in the stream
tubes are higher than in the heterogeneous flow field.
Including ls in the STM may therefore improve the pre-
diction. It remains to be investigated whether ls derived
from inert tracer transport can be used to predict the di-
lution of a nonlinearly sorbing tracer in a heterogeneous
flow field. Attinger et al. (2003) found that effective
dispersion coefficients predicting the spatial moments of
a point-scale injected solute plume in a single realization
of the velocity field show the same behavior with travel
distance for linear and nonlinear transport. This indicates
that stream tube dispersivities derived from local linear
transport could be applied to predict transport of non-
linearly sorbing tracers. But, also for purely advective
transport, the tailing due to nonlinear sorption leads to a
dilution of the concentration at the solute front. There-
fore, ls may be neglected when this dilution is more ef-
fective than the dilution due to local-scale dispersion.

Similar to the breakthrough of the field-scale averaged
concentrations, the equivalent field-scale CDE may fail
to predict concentration depth profiles of nonlinearly
sorbing substances in heterogeneous flow fields. Kasteel
et al. (2002) demonstrated that the concentration depth
profile of a nonlinearly sorbing dye tracer showed a
larger spreading and a more pronounced leading tail
than the predicted depth profile. The self sharpening
effect of the invading dye tracer front that is expected in
a homogeneous flow field due to nonlinear sorption was
not observed in a heterogeneous flow field.

Spatial Structure of Local Concentrations and
Stream Tube Velocities

The spatial distribution of local concentrations in a
heterogeneous flow field reflects the structure of the
flow field. It may therefore be used to infer information
about the spatial structure of the hydraulic conductivity
field. Forrer et al. (2000) determined spatial distribu-
tions of dye tracer concentrations with a 1-mm spatial
resolution using quantitative image analysis of photo-
graphed dye patterns in soils. Using this technique,
Kasteel et al. (2005) derived spatial correlations of dye
concentration distributions and found that concentra-
tions were correlated over only small distances (1–10 cm).
This corroborates the small and hardly determinable
spatial correlation scale of hydraulic properties (see dis-
cussion above) and points at much smaller advective
than local-scale dispersive mixing time scale. The spatial
correlation of the concentrations is predicted in terms of
the geostatistical parameters of the hydraulic conduc-
tivity field and the local-scale dispersion (Pannone and
Kitanidis, 2001; Vanderborght, 2001). For a wide injec-
tion surface and a pulse application of solute, the con-
centration covariance is approximated as

^C(x; t)C(y; t)&� ^C(x; t)&^C(y; t)& »
M2

0

^u&
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2p)2[s4

x1x1
(t) 2 s2

x1y1
(t; x 2 y)]

q �

exp 52 1
2 3

(x1 2 ^v&t)2s2
x1x1

(t) 2 2(x1 2 ^v&t)(y1 2 ^v&t)sx1y1 (t; x 2 y) 1 (y1 2 ^v&t)2s2
x1x1

(t)
s4

x1x1
(t) 2 s2

x1y1
(t; x 2 y) 4 6

2
M2

0

^u&
22ps2

x1x1
(t)

exp 52 1
2 3 (x1 2 ^v&t)2 1 (y1 2 ^v&t)2

s2
x1x1

(t) 4 6 [46]

whereM0 (M L22) is the mass applied per unit area, and
sx1y1 (t,x 2 y) (L2) is the covariance of the displacement
in the direction of the mean flow of two particles that are
released in the flow field with a separation distance x 2
y. When x and y lay on the same distance from the
injection surface (x1 5 y1), then first-order approxima-
tions of sx1y1(t,x 2 y) and sH H (x,y) are related as

sx1y1 (t 5 x1/^v1&; x 2 y) 5 ^v1&
2
sH H (x,y) [47]

Fig. 4. Breakthrough curves of flux averaged concentrations at two depths, 0.5 and 0.8 m, below the injection surface in a heterogeneous two-
dimensional saturated flow field (sf

2 5 1, g1 5 g2 5 10 cm, ldL 5 0.2 cm, ldT 5 0.02 cm, us 5 0.5) of two different tracers: a nonlinearly sorbing
reactive tracer (kf 5 1, nf5 0.67) (left panel), and a strongly nonlinearly sorbing tracer (kf5 0.6, nf5 0.3) (right panel). Solid lines are numerically
simulated breakthrough curves in realizations of the conductivity field, dashed lines are the predictions by the equivalent CDE (Eq. [42]) and
symbols are predictions by a STM (Eq. [41], [43], [44], [45]).
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The two-particle arrival time covariance, sH H (x,y), is
related to the spatial covariance of stream tube veloci-
ties as (Vanderborght et al., 2005)

^vs(x)vs(y)& 2 ^vs(x)&^vs(y)& » ^v1&
4
sH H (x,y)/x21 [48]

Figure 5 shows first-order predictions of the spatial
correlation perpendicular to the mean flow direction of
local concentrations in the center of a solute plume (x12
^v1&t5 y1 2 ^v1&t1 5 0) and of the stream tube velocities in
a reference plane for two travel distances and two local-
scale dispersion coefficients (Pe 5 g1/ldL). The spatial
correlations of local concentrations and stream tube ve-
locities increase with travel distance or travel time and
increasing local dispersion. This reflects the local disper-
sion process that smoothes local concentration gradients
with time. The local concentrations are correlated over a
smaller distance than stream tube velocities. This implies
that a higher spatial resolution is required to determine
the structure of local concentration patterns than the
structure of the stream tube velocities. It also implies
that the local-scale dispersion and the time available for
mixing (i.e., the travel time) have a relatively larger im-
pact on the correlation of local concentrations than on
the correlation of stream tube velocities. For the con-
sidered travel distances and Peclet numbers, the spatial
correlations of stream tube velocities are similar; that is,
they are only slightly influenced or “contaminated” by
the local-scale mixing. As a consequence, spatial corre-
lations of stream tube velocities may be used to infer the
structure of hydraulic properties, even when the local-
scale dispersion is not known or assumed to be 0. The
two-particle arrival time covariance and stream tube
velocity covariance functions have been used to infer
the spatial characteristics of the hydraulic conductivity
in aquifers from BTCs measured at different locations
on a reference surface (Rubin and Ezzedine, 1997;
Vanderborght and Vereecken, 2001; Bellin and Rubin,
2004; Vanderborght et al., 2005) and in a multilevel
pumping well (Bellin and Rubin, 2004).

To illustrate the effect of the structure of the hydraulic
conductivity field on the spatial structure of the concen-
tration field and of the stream tube velocities, transport

in a synthetic saturated layered soil profile was simu-
lated. The mean and variance of the hydraulic conduc-
tivity in the two soil layers were identical, but their
spatial structure differed. The structure was isotropic,
with a correlation length of 0.1m in the top layer (0–0.5 m),
and anisotropic in the subsoil, with vertically elongated
structures with horizontal and vertical correlation lengths
of 0.02 and 0.2 m, respectively. To assure connectivity of
high- and low-conductivity zones across the layer bound-
ary, two realizations with different spatial structures but
covering the entire soil profile were simulated using the
same seed number in a spectral random field generator
(Gutjahr et al., 1994). The first layer was taken from the
upper part of the first realization and the second from
the bottom part of the second realization. Figure 6 shows
the hydraulic conductivity, the simulated vertical water
flow component in the layered soil profile, together with
the concentration pattern when the center of mass of the
plume is expected at the boundary of the two layers. The
flow field with wider and more tortuous flow channels
in the upper part and narrow but straight channels in the
bottom part clearly reflects the structure of the hydraulic
conductivity field. The concentration pattern is less strik-
ingly influenced by the structure of the conductivity field.
The spatial correlation in the horizontal direction of the
local concentrations is smaller in the bottom layer than in
the top layer, but the difference between the two layers
is relatively small when it is compared with the difference
in spatial correlation of the hydraulic conductivity (factor
5 difference) (Fig. 7). On the other hand, the difference
in the spatial correlation of the stream tube velocities is
larger. This implies that monitoring of spatial patterns of
concentration breakthrough with a relatively lower spatial
resolution may provide more information about the spatial
structure of the hydraulic conductivity than analyzing con-
centration patterns that are obtained with a high spatial
resolution. First-order predictions of spatial correlations for
the deeper soil layer were obtained assuming a second-
order stationary conductivity field with geostatistical par-
ameters of the deeper soil layer (i.e., by neglecting the
different structure of the upper soil layer).Despite the non-
stationarity of the hydraulic conductivity field, the spatial

Fig. 5. Effect of (a) the travel time/distance and (b) the local-scale dispersion (Pe 5 g1/ldL) on the spatial correlation in the direction transverse to
the mean flow direction of the local concentration, rCC (open circles), and stream tube velocities, rvsvs (solid circles). First-order predictions in a
heterogeneous aquifer with sf

2 5 1, g1 5 g2 5 5 m, g3 5 1 m, ldL 5 0.1 m, ldT 5 0.01 m are shown.
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correlations of concentrations and stream tube velocities
were relativelywell predicted,which suggests these spatial
correlations are strongly determined by the structure of
the flow field in the upstream vicinity of this transect and
relatively independent of the flow field structure further
away from it.

The relation between the spatial structure of the
transport process and the hydraulic properties has so
far been investigated for saturated flow conditions only.
For unsaturated flow conditions, the structure of the
flow field is determined by the structure of the unsatu-
rated hydraulic parameters or scaling factors and their
cross covariance. Due to the nonlinearity of the un-
saturated flow equation, the structure of the flow field
also changes with degree of saturation or mean flow rate.
Using first-order approximate relations between the
spectra of the scaling factors of unsaturated hydraulic
functions and the spectrum of the flow velocity, the spa-
tial covariance of local concentrations and stream tube
velocities can be derived directly. This allows investi-
gation of the sensitivity of these covariances on the
structure of unsaturated hydraulic parameters and the
mean flow.

TRANSPORT IN NONSTATIONARY
VELOCITY FIELDS

The previous sections were based on the assumption
of stationary velocity fields, which exist for steady-state
and gravity-driven (=^h& 5 0) flow. Close to the soil sur-
face, the flow regime is determined by transient climatic
boundary conditions, whereas at the bottom boundary of
the vadose zone, the hydraulic gradient in the capillary
fringe above the groundwater table becomes ,1. As a
consequence, the velocity fields at those boundaries are
nonstationary both in time and space. The solution of
the stochastic flow and transport equations for transient
flow conditions and in bounded domains is far more
complex. Mantoglou and Gelhar (1987a, 1987b, 1987c)
extended the spectral perturbation approach of Yeh
et al. (1985a, 1985b) for transient flow conditions and
found that local-scale heterogeneities induce anisotropy

Fig. 6. Transport in a layered soil profile. Top panel represents the
spatial distribution of the hydraulic conductivity in the profile [sf

2 5
1, ldL5 0.2 cm, ldT5 0.02 cm, us5 0.5, g1 5 g25 10 cm (top layer),
g1 5 20 cm, g2 5 2 cm (bottom layer)], middle panel the simulated
vertical component of the pore water velocity, vx1, and the bottom
panel the concentration profile when the center of mass of the
plume is at 50 cm below the injection surface. In the areas between
the two top and two bottom horizontal lines, the spatial correlation
in the horizontal direction of the concentrations was calculated (see
Fig. 7).

Fig. 7. Spatial correlations of (a) concentrations, rCC, and (b) stream tube velocities, rvsvs , in the direction perpendicular to the mean flow direction in
a layered soil profile (see Fig. 6). Symbols refer to correlations derived from numerical simulations and lines from first-order predictions.
Correlations of concentrations were derived at 30 cm below the injection (top layer; solid circles, dashed lines) and at 70 cm below the injection
(bottom layer; open circles, solid lines) when the center of mass of the plume is at the boundary of the two layers. Correlations of stream tube
velocities were derived at the 40-cm depth (top layer; solid circles, dashed lines) and at the 80-cm depth (bottom layer; open circles, solid lines).
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and hysteresis of the larger scale effective hydraulic
conductivity, which depends on the prevailing flow
conditions. These findings were confirmed by numerical
flow simulations in a generated heterogeneous conduc-
tivity field (Polmann et al., 1991). However, the spectral
approach imposes some restrictions (unbounded do-
mains, smooth variations of flow characteristics in space
and time, or quasi-stationarity) that limit its application
for realistic cases of transient flow in soils. For general
nonstationary conditions, linearized moment equations
were solved numerically to obtain effective hydraulic
parameters and two-point (cross)covariances of depen-
dent variables (Mantoglou, 1992; Zhang, 1999). The ef-
fective hydraulic conductivity and the variance of water
content and matric head derived from the stochastic
theory were in good agreement with field observations
(Jensen and Mantoglou, 1992).

The two-point covariance function of the pore water
velocity is defined as

Cvivj(x,t;x,t9) 5 ^(vi(x,t)

2 ^vi(x,t)&)(vj(x,t9)� ^vj(x,t9)&)& [49]

For nonstationary velocity fields, a first-order approx-
imation of the particle trajectory equation (Eq. [14])
assuming purely advective transport (vd 5 0) (Indelman
and Rubin, 1996) is

dX(t)
dt

» ^v(^X(t)&)& 1 v9(^X(t)&) 1 X9(t) � =^v(^X(t)&)&

[50]

where

d^X(t)&
dt

» ^v(^X(t)&)& [51]

so that

dX9(t)
dt

5
dX(t)
dt

2
d^X(t)&

dt
» ^v(^X(t)&)& 1 v9(^X(t)&)

1 X9(t) � =^v(^X(t)&)& [52]

For the case of unidirectional flow ð]^vi&
]xi

5 0 for i 6¼ 1Þ,
the particle location variance at a certain time is derived
from two-point velocity covariance as (Sun and Zhang,
2000):

s2
x1x1

(t) » #
0

t

#
0

t
^v1(^X(t)&)&2

^v1(^X(t9)&)&^v1(^X(t0)&)&

Cv1v1(^X(t9)&,t9; ^X(t0)&,t0)dt0dt9 [53]

Particle location variances for more general flow
conditions are given by Lu and Zhang (2003). The
nonstationarity of Cvivj(x,t;x,t9) implies that this function
needs to be evaluated for each pair of velocity obser-
vations in the space–time domain. If the space domain is
discretized using Ni and the time domain Nj nodes,
Cvivj(x,t;x,t9) needs to be evaluated for (NiNj)2 pairs.
For three-dimensional flow and nonstationary boundary
conditions, this evaluation becomes a daunting numer-
ical task. This may explain that, although the approach
can be applied for transient flow conditions, illustrative

examples were given by Sun and Zhang (2000) and Lu
and Zhang (2003) for steady-state two-dimensional flow
fields. The effect of the capillary fringe above the water
table on the compression of a solute plume (i.e., a de-
crease of the particle location variance with travel dis-
tance) could be reproduced using Eq. [53] (Sun and
Zhang, 2000). Numerical simulations by Abdou and
Flury (2004) illustrate the effect of the capillary fringe
on BTCs. Especially in soils with vertical structures, the
capillary fringe leads to a retardation of the break-
through and a smaller coefficient of variation of travel
times. However, in soils with horizontal and isotropic
structures, the effect of the capillary fringe on the travel
time moments was considerably smaller.
Russo et al. (1994a, 1994b) performed numerical ex-

periments of solute transport in generated Gaussian het-
erogeneous conductivity fields for transient boundary
conditions. They found that the importance of the hori-
zontal flow components increases under transient flow
conditions, a phenomenon which is typical for unsatu-
rated but not for saturated flow. This leads to a larger
lateral redistribution of solutes in the surface soil layer
and a reduction of the spatial covariance of the vertical
solute particle velocity in the direction of the mean flow.
As a consequence, the vertical spreading of a solute
plume or the spreading of an averaged BTC is smaller
than under steady-state flow conditions. Similar numer-
ical simulations considering water uptake by plants
(Russo et al., 1998) suggested that crop water uptake
intensifies lateral water redistribution in the root zone
even more and therefore further reduces the vertical
solute spreading. Using the first-order approximate ve-
locity covariance for a steady-state flow rate equal to
the time averaged flow rate in the transient flow sce-
nario combined with the Lagrangian first-order transport
approximation led to an overestimation of the solute
spreading in the vertical flow direction for the transient
flow scenario (Russo et al., 1994b). This is explained by
the assumption of straight particle trajectories in the
Lagrangian first-order analysis, so the effect of lateral
redistribution during the redistribution phase after a
rainfall or irrigation event is not considered. A second
explanation is that with increasing variability of the
unsaturated hydraulic conductivity (i.e., for drier con-
ditions), the first-order approximations underestimate
the variability of the flow more for the transverse flow
components than for the longitudinal flow compo-
nents. A third explanation is that close to the soil sur-
face the effective flow rate during periods when solutes
are actually leached is considerably larger than the time
averaged flow rate (Vanderborght et al., 2000b) that cor-
responds to the steady-state flux deeper in the soil pro-
file for which the first-order approximate velocity
covariance is calculated. For noncorrelated lnaK and
lnah parameter fields that were considered by Russo
et al. (1994a, 1998) the equivalent dispersivity decreases
monotonically with increasing average water content or
flow rate (Russo, 1995b). As a consequence, the smaller
vertical spreading close to the surface boundary during
transient leaching, as compared with the spreading for
steady-state time-averaged flow, can be explained also
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by the higher water contents and lower relative flow vari-
ability during periods when leaching effectively takes
place. However, following the same line of reasoning,
it is anticipated that transient flow in media that show
increased dispersivity with increasing degree of satu-
ration or flow rate (i.e., media with a negative correla-
tion between lnaK and lnah, Miller–Miller media) above
a critical saturation threshold, may actually lead to a
larger relative flow variability and dispersion close to the
soil surface than under steady-state conditions. There-
fore, the conclusion that transient flow conditions and
plant water uptake lead to a lower vertical solute spread-
ing or equivalent dispersivity than in steady-state flow
conditions cannot be generalized, since experimental
data do no confirm this conclusion, or even contradict it
(Vanderborght et al., 2000a).

Transient flow conditions also affect leaching rate.
Figure 8 shows the simulated average solute flux at two
depths in a heterogeneous soil profile for steady-state
and for transient flow resulting from climatic boundary
conditions plotted vs. the cumulative amount of leach-
ate at the corresponding depths. Of note is the retarda-
tion of the solute breakthrough for the transient flow
case, which is larger close to the surface boundary. Ap-
parently more water is required to leach the tracer for
transient than for steady-state conditions. The larger
lateral redistribution of solute in the surface soil layer
due to transient flow boundary conditions leads to a
homogenization of the solute mass in the surface layer
and a redistribution of solute mass from high flow rate
regions to those with a lower flow rate. The effect of this
redistribution or homogenization on the average leach-
ing rate is analogous to the effect of a uniform initial
concentration distribution in a heterogeneous flow field
on the leaching rate. For a uniform initial concentration
distribution in a heterogeneous flow field, the average
solute arrival is inversely proportional to the harmonic
average of the local pore water velocities close to the
initial concentration profile and to the arithmetic aver-
age at larger distances from the injection (Vanderborght
et al., 1998; Demmy et al., 1999). Since the harmonic
average of local pore water velocities is smaller than the
arithmetic one, the effective average leaching rate is
smaller close to the initial uniform concentration profile
than farther from it, where it converges to the time
averaged flow rate divided by the time averaged volu-

metric water content. For steady-state flow rates, this
lateral redistribution and homogenization does not take
place in the surface layer and the amount of solute that
leaches at a certain location is proportional to the local
flow rate. This corresponds with a uniform boundary
value problem, where the locally injected solute mass
is proportional to the local flow rate. For a uniform
boundary value problem, the leaching rate does not
change with distance from the injection surface and is
equal to the arithmetic average of the local pore water
velocities, or the average flow rate divided by the aver-
age volumetric water content.

In the analyses discussed above, the surface boundary
condition was treated as a deterministic variable, which
applies when, for example, the actual location and dis-
tribution of a solute plume that was applied in the past
needs to be predicted based on knowledge of the past
boundary conditions. For scenario analyses the tempo-
ral variability of the boundary conditions may also be
represented using a deterministic series of boundary con-
ditions. However, when the leaching of an applied sub-
stance needs to be predicted, the uncertainty about the
boundary conditions needs to be included. Foussereau
et al. (2000a, 2000b) included the uncertainty of the
boundary fluxes in the velocity two-point covariance
function to predict the expected concentration BTCs at a
certain depth. In this case, the expected concentration is
the averaged concentration in all realizations of the
heterogeneous soil profile and of the time variable rain-
fall pattern. For the cases they considered (i.e., an inert
tracer in a humid climate without evapotranspiration)
the uncertainty of the boundary fluxes dominates the
travel time variance of a solute from the surface to a
certain observation depth. The fact that soil heteroge-
neity does not play an important role also explains the
good agreement between their stochastic one-dimen-
sional flow model and Monte Carlo simulations in two-
dimensional heterogeneous soil profiles. These results
are in agreement with those of Jury and Gruber (1989).
However, the importance of the climatic boundary con-
dition uncertainty relative to that of the soil properties
depends also on the absolute solute travel time from
the surface to a certain depth. The larger this time period,
the larger the time averaging window and the smaller
the variability or uncertainty of the averaged rainfall.
Therefore, the conclusion that uncertainty of the climatic

Fig. 8. Simulated breakthrough curves of spatially averaged solute fluxes at two depths in a realization of a two-dimensional heterogeneous soil
profile. Averaged fluxes are plotted vs. the cumulative amount of leachate. Solid circles represent simulated breakthrough in a steady-state flow
field; open circles are the results for a transient flow field simulated for climatic boundary conditions.
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boundary conditions dominates the prediction of en-
semble averaged concentrations must be questioned for
substances that are retarded due to sorption and need a
considerably longer time to leach.

SUMMARY
Starting with the general limitation of first-order so-

lutions of stochastic continuum equations, it is trivial that
solutions that neglect higher order perturbations only
apply for relatively small perturbations of the flow and
transport equations. When higher order perturbations
are neglected, the effect of spatially variable hydraulic
properties on higher order moments (skewness and kur-
tosis) quantifying “tailing” of field-scale averaged BTCs
or concentration profiles cannot be predicted. Tailing
caused by local transport processes (e.g., nonlinear and
non-equilibrium sorption) can be included in a STM and
coupled with a stochastic advection velocity. Neither can
higher order moments or deviations of second-order
stationarity of hydraulic parameter fields (e.g., statistics
that quantify connectivity of hydraulic properties) be
considered and accounted for. It is important to note the
difficulties already encountered in attempts to derive
second-order moments of hydraulic parameters, espe-
cially the spatial (cross)covariance in the vertical di-
rection (i.e., the direction of the mean flow) based on a
discrete or grid-based sampling of the vadose zone. To
determine higher ordermoments of the parameter fields,
especially connectivities, with sufficient precision, a con-
tinuous three-dimensional mapping of the parameter
fields is required. The application of noninvasive tomog-
raphic geophysical methods to characterize structures
that are relevant for vadose zone flow and transport is
very promising.

A second limitation imposed to obtain closed-form
solutions of the moment equations is that of uniform
gravity-driven steady-state flow. Despite these limita-
tions, the direct link between larger scale transport, the
structure of smaller scale soil hydraulic properties, and
the state variables of the soil that is obtained from these
closed-form solutions is of great importance to under-
standing and predicting field-scale transport. It explains
and predicts differences between field-scale transport
and transport in small soil columns and differences be-
tween transport in saturated media and in the vadose
zone where the structure and variability of the flow field
are functions of the degree of saturation.

Field-scale averaged transport of a widespread ap-
plied solute is often described using a one-dimensional
equivalent CDE model. First-order approximate solu-
tions of the stochastic flow and transport equation pre-
dict the variance of particle travel times and particle
locations from which the equivalent dispersivity length,
leq, can be derived. A first important result is that first-
order solutions predict an increase of leq, with travel
distance until an asymptotic value is reached, which is in
accordance with results from several field-scale leach-
ing experiments. The asymptotic state leq may not be
reached in the upper part of the soil profile (first 1 m),
where a strong vertical gradient in chemical and bio-

logical soil properties also exists. Whether this vertical
gradient can be combined with an equivalent CDE re-
quires further investigation.
A second important result is that unlike in saturated

media, in the vadose zone leq depends on the flow rate
or degree of saturation. The relation between leq and
flow rate is determined by the correlation between the
hydraulic conductivity and the capillary length (i.e., the
correlation between lnaK and lnah). For positively cor-
related lnaK and lnah, leq tends to increase monoton-
ically with decreasing degree of saturation whereas for a
negative correlation, the relation between leq and satu-
ration is nonmonotonic and leq reaches a minimum at a
critical degree of saturation. It should be noted that at
this moment, no experimental studies exist that show
an increase of leq with decreasing degree of saturation
in real soils. This suggests that lnaK and lnah are mostly
negatively correlated and that leaching experiments
have been performed using relatively large flow rates.
Since the use of an equivalent CDE implicitly implies

an averaging of local concentrations, this model cannot
be applied directly to upscale nonlinear local transport
processes, such as nonlinear sorption and nonlinear
transformations. For such problems, the use of a STM
that reproduces the statistics of local concentration dis-
tributions is more adequate. The STM parameters (i.e.,
the variance of the stream tube velocities and the stream
tube dispersivity) are related to the two-particle travel
time covariance, sH H (x,y), which can be predicted based
on the structure of the hydraulic parameter fields
and the local-scale dispersion by first-order solutions
of the stochastic flow and transport equations. Similar
to the equivalent dispersion model, the first-order so-
lutions predict that the STM is an equivalent model
with parameters that scale with travel distance and flow
rate. The failure of the equivalent CDE to predict field-
scale nonlinear transport and the dependence of the
equivalent CDE and STM parameters on transport
distance and average flow rate demonstrate the impor-
tant influence of smaller scale structures and three-
dimensional flow and transport processes on larger scale
transport. Without information about these structural
properties and without its proper implementation in
larger scale equivalent models, experimental data on
larger scale transport processes cannot be extrapolated
to other transport distances, boundary conditions, and
other substances.
From the two-particle travel time covariance,

sH H (x,y), the spatial covariance of local concentrations
and stream tube velocities can be derived. The spatial
covariance of stream tube velocities is less influenced by
local-scale dispersion and travel time and extends over a
larger range of separation distances than the spatial
covariance of local concentrations. Therefore, the
former reflects the structure of the flow field more
clearly and may be used to inversely infer the structure
of the hydraulic conductivities. This implies that a
noninvasive monitoring of the three-dimensional trans-
port process will provide a better insight (Kemna et al.,
2002; Vanderborght et al., 2005) than spatially highly
resolved snapshots of concentration distributions.
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For transient and nonuniform flow, the moment equa-
tions may be solved numerically to obtain the non-
stationary velocity covariance function. But it remains a
challenge for three-dimensional non-stationary flow and
transport and may be even more computationally de-
manding than Monte-Carlo simulations. The develop-
ment of computationally efficient methods exploiting
parallelisms in the moment equations is a field of fur-
ther research (Zhang, 1999). However, the first-order
approximation of the particle trajectory along which
the velocity perturbations are evaluated becomes more
problematic for transient flow conditions. The larger
lateral components of the flow velocity during the redis-
tribution stages led to a larger lateral mixing and a cor-
responding decrease in vertical spreading. Another
aspect, which received much less attention, is the lateral
solute redistribution close to the soil surface into zones
that are bypassed during downward flow events. As a
consequence, the amount of water required to leach a
solute plume below a certain depth may be considerably
larger under transient than under steady-state flow con-
ditions. However, these conclusions are based on Monte
Carlo simulations in heterogeneous fields without a cor-
relation between lnaK and lnah.. Whether these results
can be extrapolated to fields with a negative lnaK and
lnah correlation requires further investigation. The effect
of transient flow conditions on the two-particle travel
time covariance, sH H (x,y), and consequently on stream
tube dispersivities and velocities has so far not been
investigated. Upscaling of nonlinear transport processes
in nonstationary velocity fields using a STM therefore
remains a challenge.

Finally, it should be noted that we only considered the
spatial variability of soil hydraulic properties. Spatial
variability of chemical and biological processes has an
equally important impact on transport and transforma-
tion of substances in the subsurface. However, experi-
mental data are scarce or nonexistent (Albrecht et al.,
2002), especially for the spatial variability of biological
processes (e.g., root water and nutrient uptake) and
their correlation with hydraulic and chemical properties.
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APPENDIX

Relation between sT
2(x1), sTT(x,x), and ^sT

2(x)|v(x)&

The unconditional arrival time variance, that is, the variance
of arrival times in all realizations of the velocity field, v(x), at a
certain point x of particles that are injected in an injection
plane perpendicular to the average flow direction and at dis-
tance x1 from the observation point is defined in terms of the
unconditional travel time moments as

s2
H (x) 5 ^H 2(x)& 2 ^H (x)&2 [A1]

where ^ & represents the expected value of a random variable.
In a second-order stationary velocity field v(x), the uncondi-
tional arrival time variance sH

2(x) is independent of the location
of x on a reference plane perpendicular to the average flow

direction, so the unconditional variance of arrival times at a
certain point x is identical to the arrival times on the reference
surface: sH

2(x) 5 sH
2(x1). For ergodic velocity fields and large

injection and reference surfaces, the unconditional arrival time
variance at a reference plane is identical to the arrival time
variance at a reference plane conditioned on a certain real-
ization of the velocity field: sH

2(x1) = sH
2(x1)|v(x). The variance of

arrival times at point x conditioned on a realization of the
velocity field (i.e., in a specific realization of the velocity field,
sH
2(x)|v(x)) is defined in terms of the conditional travel time

moments as

s2
H (x)|v(x) 5 ^H 2(x)&|v(x) 2 ^H (x)&2|v(x) [A2]

Since the expected value of the conditional expectation of a
random variable is equal to the expected value of the un-
conditioned random variable, the unconditional travel time
variance Eq. [A1] can be written after adding and subtracting
^^H (x)&2|v(x)& as:

s2
H (x) 5 ^^H 2(x)&|v(x)& 2 ^^H (x)&|v(x)&

2
1 ^^H (x)&2|v(x)&

2 ^^H (x)&2|v(x)& [A3]

The first and last terms of the right-hand side of Eq. [A3]
represent the expected value of the variance of arrival times
at point x conditioned on the velocity field: ^sH

2(x)|v(x)&. The
second and third terms represent the variance of the expected
arrival times at point x conditioned on the velocity field:
s^H &

2 |v(x)(x). In other words, the unconditional arrival time vari-
ance equals the sum of the expected conditioned arrival time
variance and the variance about the conditioned mean ar-
rival time.

s^H &
2

|v(x)(x) can be rewritten as

s2
^H &|v(x)(x) 5 ^^H (x)&2|v(x)& 2 ^^H (x)&|v(x)&

2

5 ^1^H (x)&|v(x) 1 H 9(1)(x)|v(x)21^H (x)&|v(x)
1 H 9(2)(x)|v(x)2& 2 ^H (x)&2

5 ^H (1)(x)|v(x)H
(2)(x)|v(x)& 2 ^H (x)&2

5 sH H (x,xÞ [A4]

where H9(1)|v(x) and H9(2)|v(x) are independent perturbations of the
arrival times H (1)|v(x), H (2)|v(x) of two different particles around the
expected arrival time in a given realization of the velocity field.
Since sH H (x,x) equals s^H &

2 |v(x)(x), Eq. [A3] can be written as

s2
H (x1) 5 sH H (x,x) 1 ^s2

H (x)|v(x)& [A5]
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