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Abstract— In this paper we analyze support vector ma-

chine classification using the soft margin approach that al-

lows for errors and margin violations during the training

stage. Two models for learning the separating hyperplane

do exist. We study the behavior of the resulting optimiza-

tion algorithms in terms of training time and test accuracy

for unbalanced data sets. The main goal of our work is to

compare the features of the resulting classification functions,

which are mainly defined by the support vectors arising dur-

ing the support vector machine training.

Index Terms— Support Vector Machine Classification, Su-

pervised Learning, Soft Margin Algorithms, Unbalanced

Data.

I. Introduction

During the last decade support vector machines (SVMs)
have emerged as powerful and reliable kernel methods for
binary classification tasks. Their application has been ex-
panded to various fields of learning such as regression and
clustering. In this work we analyze supervised SVM learn-
ing for two classes, which is one of the most important tasks
of data mining in our days.

Usually the basic maximal margin classifier [1] is not well
suited for learning real world problems. Either there is no
solution at all or, when tuning the parameters, the hyper-
plane suffers from overfitting effects. To avoid such prob-
lems nearly all implementations use a soft margin model
that includes a penalty parameter for the trade-off between
training errors and model complexity.

In this work we analyze and compare the two well known
SVM optimization approaches. We show that the L1-norm
learning method is superior to the L2-norm method in
terms of the number of support vectors in the training
data. This method produces a significantly smaller number
of support vectors, which results in a sparse classification
function that leads to fast classification speed. In addition
we show that using a special weighting method for the er-
ror penalization for unbalanced data the accuracy of this
method is significantly better.

The remainder of this paper is structured as follows.
In Section II we review some basic concepts of supervised
learning and the support vector machine learning method.
In Sect. III we introduce our flexible soft margin implemen-
tation that is used to run the tests. Results and a detailed
discussion are given in Sect. IV. In Sect. V we summarize
our findings and show directions to future work.
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II. Soft Margin Support Vector Machine
Learning Methods for Unbalanced Data

Support vector machine classification, as it was intro-
duced by Vladimir Vapnik [2], is a well known machine
learning method. We briefly review the basic facts that are
important for the presentation of our work. For a detailed
overview on SVM learning including the principle of kernel
induced feature spaces and generalization theory we refer
to [1], [3].

SVMs rely on a linear classification function

flin(x) = 〈x, w〉2 + b =
n
∑

k=1

wkxk + b (x ∈ Rn ) . (1)

With n ∈ N we denote the number of attributes. The values
for the weight vector w ∈ Rn and the threshold b ∈ R are
fixed, but unknown and need to be adjusted during the so
called SVM training on some data set. Afterwards binary
classification for any x ∈ Rn is achieved via a hypothesis
function

h(x) := sgn (flin(x)) , (2)

where sgn(·) is the modified signum function, which we
define as

sgn(a) =

{

1 if a ≥ 0

−1 else
(a ∈ R) . (3)

To extend the linear learning approach to a set of highly
nonlinear classification functions the well known kernel
trick [4] is applied. A function φ : Rn → F is used to
map the data to a space F of possibly very high dimension
m ∈ N to ensure linear separability of the data in the so
called feature space F . This leads to

fnonlin(x) = 〈φ(x), w〉F + b =

m
∑

k=1

wkφk(x) + b , (4)

which is a function operating in the feature space. Given
a data set of l training points (training set)

{

(xi, yi) ∈ Rn × {−1, 1}, 1 ≤ i ≤ l
}

,

support vector learning is based on the idea of maximizing
the geometric margin between the two classes of points.
As shown in Fig. 1, the margin is defined as the minimal
distance between the training points and the separating
hyperplane. Note that the hyperplane always lies in the
middle of the empty region, thus the margin has equal val-
ues for both classes. Statistical learning theory provides



upper bounds for the generalization error and proves that
the choice of the maximal margin hyperplane will lead to
maximal generalization when predicting the classification
of previously unseen examples.
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Fig. 1. Empty region with width of twice the margin size.

In the past the SVM learning method has been extended
successfully to cope with noise in the training set. In the
following we shortly describe the SVM soft margin ap-
proaches that are fundamental for real world data sets in-
cluding noise. These models allow for margin errors and
tend to produce robust classifiers that do not suffer from
overfitting, which is an important objective of supervised
learning.

The general SVM soft margin model simultaneously
maximizes the width of the margin and minimizes the
training errors [1]. A vector of slack variables ξ is used
to measure by how much each training example fails to
achieve a certain target margin γ in the feature space. For
a training set the i-th slack variable (1 ≤ i ≤ l) is defined
as

ξi := max

{

γ − yi

(

m
∑

k=1

wkφk(xi) + b

)

; 0

}

∈ R .

SVM training is aimed at minimizing the norm of the
weight vector w. This is due to the fact that SVMs have
to maximize the geometric margin γg, which is defined as

γg :=
γ

‖w‖F
.

Therefore it is reasonable to fix the functional margin γ
and minimize the norm of the weight vector. Traditionally
γ = 1 is chosen.

The classification parameters of the nonlinear classifier
(4) can be derived from the solution of the constrained
convex optimization problem

minw∈F , b∈R,�∈Rl

1

2
‖w‖2

F + C

l
∑

i=1

ξq
i

s.t.

yi · fnonlin(x
i) ≥ 1 − ξi (1 ≤ i ≤ l) ,

ξi ≥ 0 (1 ≤ i ≤ l) .
















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











(5)

C ≥ 0 is an important parameter for the compromise be-
tween margin and error. A small value for C will increase

the number of training errors whereas a very large C will
lead to a behavior similar to that of the hard margin SVM
learning method that is not useful for most of the real
world data sets. The overall margin violation is computed
by summing up all values of the slack variables given the
functional margin γ = 1 as a target [3].

The parameter q ∈ N+ is used to define the influence of
the slack variables. SVM soft margin methods are divided
into L1 (q = 1) and L2 (q = 2) models [1]. In Fig. 2 we
show the consequence of this choice. For all 1 ≤ i ≤ l we
have
• ξi = 0 for strong classifications outside the margin,
• ξi ∈ (0, 1] for weak classifications inside the margin, and
• ξi > 1 for wrong classifications.
The L2 model highly penalizes the real classification errors
and tolerates margin violations to a greater extent, whereas
the L1 model handles both cases in a similar linear way.
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Fig. 2. Influence of the exponent q in (5) onto the error penalization
for a negative training point. Results for positive points are evaluated
analogously.

It is known that SVM algorithms solve the correspond-
ing dual optimization problem to (5). This is mainly to
allow for the usage of kernel functions. In the dual for-
mulation only dot products 〈φ(xi), φ(xj)〉 between data
points in the high-dimensional space F do occur; the points
φ(xi), φ(xj) themselves are not required. Thus substitut-
ing the dot products with function values k(xi, xj) of a
nonlinear kernel function

k : Rn × Rn → R (6)

relieves the user from constructing an explicit nonlinear
mapping φ for the input data.

For the primal problem (5) the dual problems can easily
be derived by using Lagrange’s theory [5]. The dual form
for q = 1 is defined as

min�∈Rl

1

2

l
∑

i,j=1

yiyjαiαjk(xi, xj) −

l
∑

i=1

αi

s.t.

l
∑

i=1

yiαi = 0 ,

0 ≤ αi ≤ Ci (1 ≤ i ≤ l) .















































(7)

Please note that we already included the kernel based
formulation. In the same manner we derive the dual for



q = 2 as

min�∈Rl

1

2

l
∑

i,j=1

yiyjαiαj

(

k(xi, xj) +
δij

2C

)

−

l
∑

i=1

αi

s.t.

l
∑

i=1

yiαi = 0 ,

0 ≤ αi (1 ≤ i ≤ l) .
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(8)

The problem (7) differs from the maximal margin dual
[1] in the Lagrange multipliers αi (1 ≤ i ≤ l) being upper
bounded by C, which gives rise to call this approach the
box constraint. The problem (8) is also very similar to the
basic dual. The only change [6] is the addition of 1/2C to
the diagonal entries in the Gram matrix K where

Ki,j := k(xi, xj) (1 ≤ i, j ≤ l) .

Note that the usually the matrix I/C is added to K [7].
This corresponds to a slightly different formulation of (5),
where a penalization constant C/2 is used instead of C.
Sometimes even both approaches are presented in a mixed
form [8], which may lead to problems in the comparison of
tuned parameter values.1 In this work we compare results
of the soft margin methods for q = 1 and q = 2 and thus
have to ensure usage of equal C values in (5).

Since we deal with convex problems the existence of
unique global solutions for (7) and (8) is guaranteed [5].
Furthermore the optimal function values of primal and dual
problems are equal and the primal solution vector is of the
form

w∗ =

l
∑

i=1

yiα
∗
i φ(xi) . (9)

Thus, for both methods the resulting dual solution α∗, i.e.,
the vector of Lagrange multipliers, can be used to define a
dual classifier [1]

f∗
nonlin(x)

(4)
=

m
∑

k=1

w∗
kφk(x) + b∗

(9)
=

m
∑

k=1

(

l
∑

i=1

yiα
∗
i φk(xi)

)

φk(x) + b∗

=

l
∑

i=1

yiα
∗
i 〈φ(xi), φ(x)〉F + b∗

(6)
=

l
∑

i=1

yiα
∗
i k(xi, x) + b∗.

Explicit knowledge of w∗ is not required for applying (4).
The threshold b∗ can be determined using the so-called
Karush–Kuhn–Tucker (KKT) conditions [1].

It is well known that only a small number of the training
points is located within the margin or on the “wrong” side

1This problem also arises for the width of the Gaussian kernel,
where sometimes the squared value is given.

of the separating hyperplane. Only these points, called sup-
port vectors, have positive Lagrange multipliers and con-
tribute to the final classifier

f∗
sparse(x) =

∑

1≤i≤l
αi>0

yiα
∗
i k(xi, x) + b∗ . (10)

In practice, however, for numerous problems the number
of support vectors is very large. Sometimes this is caused
by poorly tuned parameters. As a result the classifier (10)
shows overfitting effects and is of slow classification speed.

In our work we analyze the impact of the parameter
q onto this effect, especially for unbalanced classification
problems. A data set is considered to be unbalanced if ei-
ther the sizes of the two classes differ significantly, or the
cost for a false negative classification is very high whereas a
false positive is acceptable, or if both conditions hold. The
latter is very important, e.g. for automated cost-sensitive
cancer diagnosis [9] and the fast-check HIV-1/2 (serum)
test [10]. For SVM learning typically a single penalization
parameter is used for all training pairs i (1 ≤ i ≤ l) [3]. It
is reasonable to weigh wrong classifications of positive and
negative points differently to obtain sensitive hyperplanes
[11]. To this end we replace the single parameter C with
two values [12] according to

Ci =

{

C+ if yi = 1

C− otherwise
(1 ≤ i ≤ l) . (11)

As it is shown in Fig. 3 the choice of C+ > C− induces
a separating hyperplane which is much more distant from
the smaller positive class than from the large negative one
[8].

Fig. 3. Possibility of moving the separating hyperplane for unbal-
anced data.

III. Flexible L1 and L2 Implementation for
Unbalanced Data

This work is based on the L1-norm SVM training method
described in [12], [13]. We briefly review the most impor-
tant features and explain the adaption for unbalanced data
as well as the flexible embedding of the L2-norm learning.

We are working with the well known decomposition
scheme [14] originally designed for the solution of (7). Mod-
ifications for the usage of the L2-norm approach will be



explained later. The algorithm repeatedly performs the
following four steps:
1. Select l̂ “active” variables from the l free variables, the
so-called working set. In our implementation the working
set is made up from points violating the KKT conditions;
see [12] for more details.
2. Restrict the optimization to the active variables and
fix the remaining ones. Compute the kernel-submatrix

Kactive ∈ Rl̂×l̂ for the restricted problem and the subma-

trix Kmixed ∈ R(l−l̂)×l̂ for the stopping criterion.
3. Check for convergence. The solution is found if step 1.
yields an empty working set.
4. Solve the restricted problem.

For each solution of the subproblem we use the gener-
alized variable projection method described in [15]. It in-
cludes a fast inner solver given in [16]. The idea of split-
ting the quadratic problem into active and inactive parts
iteratively is not new [17]. One feature that makes this
approach particularly attractive for SVM training is the
flexibility concerning the size l̂. It can be chosen accord-
ing to the available memory for the storage of the kernel
matrices. Small values lead to a large number of fast itera-
tions, whereas large values result in a small number of slow
steps, since each solution of a subproblem means to solve
a quadratic optimization problem with a dense matrix.

We adapted the software by replacing all occurrences of
C with either C+ or C−, depending on the correspond-
ing index i and the class label yi. This mainly affects the
working set selection routine, which is the famous method
of Zoutendijk [18] and is usually applied for this task [19].
It can be shown that it corresponds to selecting points vio-
lating the KKT conditions [20], [21], [22] and thus is natural
for SVM training. We described this modification in [12].
The other adjustments are for the data transformation in
the inner solver and for the computation of the threshold
b∗ after the decomposition method solved the optimization
problem. b∗ is computed via

b∗ := yi −
∑

1≤j≤l
α∗

j >0

yjα
∗
jk(xj , xi) (12)

where we limit the possible l indices to
{

i : α∗
i > 0, α∗

i < C+ for yi = 1, α∗
i < C− for yi = −1

}

.

(12) results from the KKT conditions [1].
Based on the assumptions in Sect. II the modifications

of the L1-norm software for flexible usage of the L2-norm
approach are straight-forward to implement. The decom-
position method remains unchanged, we only set C+ =
C− = ∞. We tuned the kernel function according to (8)
and the model (11). To this end we defined new parameters

Ĉ+ and Ĉ− that correspond to the original penalization
values. The modified kernel is of the form

k̂(xi, xj) := k(xi, xj) +















1
2Ĉ+

if i = j and yi = 1

1
2Ĉ−

if i = j and yi = −1

0 else

for all 1 ≤ i, j ≤ l. It can be used for both methods. For
the L1-norm model it is important to set Ĉ+ = Ĉ− = ∞.
The threshold for q = 2 is of the form

b∗ :=























Ĉ+−α∗

i

Ĉ+
−

∑

1≤j≤l,
0<α∗

j

yjα
∗
jK(xj , xi) if yi = 1

α∗

i −Ĉ−

Ĉ−
−

∑

1≤j≤l,
0<α∗

j

yjα
∗
jK(xj , xi) otherwise

,

where i can be chosen among the indices of the support
vectors in the training set [1].

IV. Experimental Evaluation and Interpretation

We analyzed two medical data sets, which are both pub-
licly available from the UCI Machine Learning Repository
[23].

The well-known breast cancer dataset from the Uni-
versity of Wisconsin Hospitals, Madison [24] includes 699
points, and each instance bears one of two possible class
labels, benign or malignant. The number of malignant ref-
erence points is 241. From the ten attributes we removed
the first one, since it codes the sample number and does not
contribute relevant information. We defined the positive
class to be malignant, so the dataset is slightly unbalanced
and emphasis lies on high sensitivity. For obvious reasons
we assume the cost for false negative points to be very
high. Of the 699 points in the dataset, 349 were set aside
for the final independent test. The remaining 350 points
were used for the training. As shown in Tbl. I an adequate
number of positive points is assigned to the test set. The
percentage of training points is in fact small (50%), but it
is large enough to compare results for different settings of
the training methods.

TABLE I

Characteristics of the data sets and the class distributions.

Training Test
Cancer data set

- Number of points 350 349
- Number of positive points 123 118
- Number of negative points 227 231

Thyroid data set
- Number of points 2772 1000
- Number of positive points 190 94
- Number of negative points 2582 906

In addition we performed numerical experiments with
the so-called thyroid data set from the Garavan Institute
in Sydney, Australia, which is known to be a hard classifica-
tion problem [25]. The 3772 instances have 15 binary and 6
continuous attributes. The task is to determine whether a
patient is hypothyroid. The negative class represents 92%
of the data [26]. Due to grossly unequal class sizes and high
cost for false negative results, the data set is unbalanced.
We used 2772 points for the training and the remaining



1000 points for the test. The class distributions are given
in Tbl. I, too.

All in all we define 6 scenarios for our tests. Mainly we
compare the behavior of the learning methods for q = 1
and q = 2, combined with the analysis of the influence by
our approach (11), i.e.

• L1-norm method











C+ = C− with a large value (a)

C+ = C− with a small value (b)

C+ and C− values differ (c) ,

• L2-norm method











C+ = C− with a large value (d)

C+ = C− with a small value (e)

C+ and C− values differ (f) .

TABLE II

Training and test results for the cancer data set with the

L1-norm model (σ = 20.0).

Case (a) (b) (c)
Parameters {C+, C−} {30, 30} {2, 2} {30, 2}
Training stage characteristics

Number of support
vectors 38 96 122

- positive 19 49 11
- negative 19 47 111
- free 5 5 12
- bounded 33 91 110

Number of training
errors 11 10 10

- positive 4 4 1

- negative 7 6 9

Test stage results

Number of test
errors 11 15 8

- positive 6 9 0

- negative 5 6 8

For the training of the SVM with the decomposition
method described in Sect. III we have chosen the following
settings:
• There are 16 instances in the cancer data set that contain
a single missing attribute value. We filled them with the
mean values of the corresponding attributes.
• We scaled the data to zero mean and variance one.
• We selected the largest possible working set size l̂ = l =
350 for the cancer data set and an adequate working set
size of l̂ = l = 1000 for the thyroid classification problem.
Since we solve the quadratic programs (7) and (8), which
have unique global solutions, the resulting classifiers do not
depend on this internal parameter.
• The Gaussian kernel [4] was used for all tests. Based on
results of optimization stages [12], [26] we fixed its width
σ to 20 (cancer) and 100 (thyroid).
• For both data sets we define fixed parameter values for
C+ and C−, which are based on earlier work [12], [26] and

provide stable classifiers.

TABLE III

Training and test results for the cancer data set with the

L2-norm model (σ = 20.0).

Case (d) (e) (f)
Parameters {C+, C−} {30, 30} {2, 2} {30, 2}
Training stage characteristics

Number of support
vectors 95 196 227

- positive 45 67 15
- negative 50 129 212
- free 70 165 187
- bounded 25 31 40

Number of training
errors 11 10 19

- positive 4 4 0

- negative 5 6 19

Test stage results

Number of test
errors 12 15 21

- positive 7 10 0

- negative 5 5 21

In Tbl. II and Tbl. III our results are presented for the
training stages as well as for the tests with the breast can-
cer data set. We show the number of support vectors in the
training set as well as their distribution among the positive
and negative classes. In addition we distinguish between
the free support vectors with αi ∈ (0, Ci) and the bounded
support vectors with αi ≡ Ci. The weighted model with
q = 1 performed best on the test data, the sensitivity was
100% and the test results were similar to the training re-
sults, which indicates good generalization of the model.
The L2 model seems to produce too many support vectors.
For all tests their number was twice as high compared to
q = 1. Interestingly, both methods showed the same be-
havior for the unweighted tests, i.e. the first two columns
in the tables. By contrast, the L1 model was superior to L2

when using the weighted approach. Both methods achieved
high sensitivity, but the number of false positive points was
significantly lower for q = 1.

Tables IV and V give the corresponding data for the thy-
roid disease data set. These results indicate an even more
pronounced superiority of training the L1-norm model with
weighted error parameters for this large and highly unbal-
anced data set. We summarize

• The number of support vectors in the training data differ
by a factor larger than 4 where the L1-norm model was
always superior.
• The free and bounded support vectors show a reverse
distribution for the L2-norm model.
• Usage of a weighted model always led to a reverse behav-
ior of sensitivity and specificity for the training as well as
for the test points.
• The best test result in terms of accuracy and sensitiv-



TABLE IV

Training and test results for the thyroid data set with the

L1-norm model (σ = 100.0).

Case (a) (b) (c)
Parameters {C+, C−} {100, {10, {100,
(divided by 103) 100} 10} 10}
Training stage characteristics

Number of support
vectors 189 217 323

- positive 87 104 36
- negative 102 113 287
- free 35 21 23
- bounded 155 196 300

Number of training
errors 44 64 64

- positive 37 57 1

- negative 7 7 63

Test stage results

Number of test
errors 27 33 25

- positive 25 31 1

- negative 2 2 24

TABLE V

Training and test results for the thyroid data set with the

L2-norm model (σ = 100.0).

Case (d) (e) (f)
Parameters {C+, C−} {100, {10, {100,
(divided by 103) 100} 10} 10}
Training stage characteristics

Number of support
vectors 790 1096 1584

- positive 118 126 94
- negative 672 970 1490
- free 661 964 1250
- bounded 129 132 334

Number of training
errors 68 93 126

- positive 63 88 2

- negative 5 5 124

Test stage results

Number of test
errors 40 48 45

- positive 37 47 1

- negative 3 1 44

ity was achieved with the weighted L1-norm model. The
number of errors in the L2-norm model was twice as large.
Tests with various real world data sets from pharmaceutical
industry [27], [28] yielded similar results and led to the
improvement of our data mining pipeline.

TABLE VI

Training times (in seconds) for the six settings.

Case (a) (b) (c) (d) (e) (f)
Cancer data 0.07 0.07 0.11 0.09 0.05 0.09
Thyroid data 422 141 203 150 48 98

We complete the discussion by giving the training times
for our tests in Tbl. VI. Besides classification speed, the
amount of time for SVM training plays a crucial role for the
selection of algorithms. As it is shown the model (c) with
the best performance led to the most expensive SVM train-
ing for the cancer data and to a very expensive training for
the thyroid data. However, for unbalanced classifications
problems where emphasis lies on true positive points and
where a false negative point produces high costs, the ob-
served increase in training time seems to be acceptable. For
large-scale learning problems where a single training stage
is extremely expensive we propose usage of parallel SVM
learning [29], [30], [31].

V. Concluding Remarks and Future Work

We have presented a comparison of the two most fre-
quently used SVM training methods for the classification
of unbalanced data sets where high emphasis is put on sen-
sitivity. Experiments have shown that the L1-norm model
in conjunction with a flexible error weighting is adequate
to achieve high sensitivity in the training and test data and
furthermore minimizes the number of false positive classi-
fications.

Future research directions include kernel modifications
in conjunction with parameter optimization for unbalanced
data sets.
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