001     52478
005     20190625110458.0
024 7 _ |2 DOI
|a 10.1016/j.rse.2006.03.008
024 7 _ |2 WOS
|a WOS:000238901000002
024 7 _ |a altmetric:5620575
|2 altmetric
037 _ _ |a PreJuSER-52478
041 _ _ |a eng
082 _ _ |a 050
084 _ _ |2 WoS
|a Environmental Sciences
084 _ _ |2 WoS
|a Remote Sensing
084 _ _ |2 WoS
|a Imaging Science & Photographic Technology
100 1 _ |a Schroeder, T.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB49697
245 _ _ |a Radiometric correction of Multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2006
300 _ _ |a 16 - 26
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Remote Sensing of Environment
|x 0034-4257
|0 12722
|v 103
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Detecting and characterizing continuous changes in early forest succession using multi-temporal satellite imagery requires atmospheric correction procedures that are both operationally reliable, and that result in comparable units (e.g., surface reflectance). This paper presents a comparison of five atmospheric correction methods (2 relative, 3 absolute) used to correct a nearly continuous 20-year Landsat TM/ETM+ image data set (19-images) covering western Oregon (path/row 46/29). In theory, full absolute correction of individual images in a time-series should effectively minimize atmospheric effects resulting in a series of images that appears more similar in spectral response than the same set of uncorrected images. Contradicting this theory, evidence is presented that demonstrates how absolute correction methods such as Second Simulation of the Satellite Signal in the Solar Spectrum (6 s), Modified Dense Dark Vegetation (MDDV), and Dark Object Subtraction (DOS) actually make images in a time-series somewhat less spectrally similar to one another. Since the development of meaningful spectral reflectance trajectories is more dependant on consistent measurement of surface reflectance rather than on accurate estimation of true surface reflectance, correction using image pairs is also tested. The relative methods tested are variants of an approach referred to as "absolute-normalization", which matches images in a time-series to an atmospherically corrected reference image using pseudo-invariant features and reduced major axis (RMA) regression. An advantage of "absolute-normalization" is that all images in the time-series are converted to units of surface reflectance while simultaneously being corrected for atmospheric effects. Of the two relative correction methods used for "absolute-normalization", the first employed an automated ordination algorithm called multivariate alteration detection (MAD) to statistically locate pseudo-invariant pixels between each subject and reference image, while the second used analyst selected pseudo-invariant features (PIF) common to the entire image set. Overall, relative correction employed in the "absolute-normalization" context produced the most consistent temporal reflectance response, with the automated MAD algorithm performing equally as well as the handpicked PIFs. Although both relative methods performed nearly equally in terms of observed errors, several reasons emerged for preferring the MAD algorithm. The paper concludes by demonstrating how "absolute-normalization" improves (i.e., reduces scatter in) spectral reflectance trajectory models used for characterizing patterns of early forest succession. (c) 2006 Elsevier Inc. All rights reserved.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
536 _ _ |a Nachhaltige Entwicklung und Technik
|c P26
|0 G:(DE-Juel1)FUEK408
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a atmospheric correction
653 2 0 |2 Author
|a relative normalization
653 2 0 |2 Author
|a multivariate alteration detection (MAD)
653 2 0 |2 Author
|a landsat time-series
653 2 0 |2 Author
|a forest succession
700 1 _ |a Cohen, W.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB62789
700 1 _ |a Song, C.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB62790
700 1 _ |a Canty, M. J.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB4989
700 1 _ |a Yang, Z.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB62791
773 _ _ |a 10.1016/j.rse.2006.03.008
|g Vol. 103, p. 16 - 26
|p 16 - 26
|q 103<16 - 26
|0 PERI:(DE-600)1498713-2
|t Remote sensing of environment
|v 103
|y 2006
|x 0034-4257
856 7 _ |u http://dx.doi.org/10.1016/j.rse.2006.03.008
909 C O |o oai:juser.fz-juelich.de:52478
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
913 1 _ |k P26
|v Nachhaltige Entwicklung und Technik
|l Nachhaltige Entwicklung und Technik
|b Umwelt
|z fortgesetzt als P47
|0 G:(DE-Juel1)FUEK408
|x 1
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-IV
|l Agrosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB50
|x 0
920 1 _ |k STE
|l Programmgruppe Systemforschung und Technologische Entwicklung
|d 31.12.2006
|g STE
|0 I:(DE-Juel1)VDB64
|x 1
970 _ _ |a VDB:(DE-Juel1)82495
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118
981 _ _ |a I:(DE-Juel1)IEK-STE-20101013
981 _ _ |a I:(DE-Juel1)VDB815


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21