001     52507
005     20210812105649.0
024 7 _ |2 DOI
|a 10.1111/j.1551-2916.2006.01178.x
024 7 _ |2 WOS
|a WOS:000239863100026
037 _ _ |a PreJuSER-52507
041 _ _ |a ENG
082 _ _ |a 660
084 _ _ |2 WoS
|a Materials Science, Ceramics
100 1 _ |0 P:(DE-Juel1)VDB3101
|a Ohly, C.
|b 0
|u FZJ
245 _ _ |a Electrical conductivity of epitaxial SrTiO3 thin films as a function of oxygen partial pressure and temperature
260 _ _ |a Oxford [u.a.]
|b Wiley-Blackwell
|c 2006
300 _ _ |a 2845
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 3845
|a Journal of the American Ceramic Society
|v 89
|x 0002-7820
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a SrTiO3 (100) epitaxial films with thicknesses of 3, 1 μm, and 250 nm were prepared on MgO (100) substrates by pulsed-laser deposition. The electrical conductivities of the thin films were systematically investigated as a function of temperature and ambient oxygen partial pressure. This was made possible by using a specially designed measurement setup, allowing the reliable determination of resistances of up to 25 GΩ in the temperature range of 600°–1000°C under continuously adjustable oxygen partial pressures ranging from 10−20 to 1 bar. The capabilities of the measurement setup were tested thoroughly by measuring a SrTiO3 single crystal. The well-known characteristics, e.g., the decline of the conductivity with a slope of –1/4 under reducing conditions and the opposite +1/4 behavior in oxidizing atmospheres, are found in the log(σ)–log(pO2) profiles of the epitaxial films. However, the p-type conductivity decreases, and the n-type conductivity increases with decreasing film thickness. This phenomenon is attributed to the charge carrier redistribution in the surface space charge layers. Owing to the high surface-to-volume ratio, the space charge layers play an important role in thin films.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
700 1 _ |0 P:(DE-Juel1)VDB3102
|a Hoffmann-Eifert, S.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB518
|a Guo, X.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)128631
|a Schubert, J.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)131022
|a Waser, R.
|b 4
|u FZJ
773 _ _ |0 PERI:(DE-600)2008170-4
|a 10.1111/j.1551-2916.2006.01178.x
|g Vol. 89, p. 2845
|p 2845
|q 89<2845
|t Journal of the American Ceramic Society
|v 89
|x 0002-7820
|y 2006
856 7 _ |u http://dx.doi.org/10.1111/j.1551-2916.2006.01178.x
909 C O |o oai:juser.fz-juelich.de:52507
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)VDB321
|d 31.12.2006
|g IFF
|k IFF-IEM
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)VDB381
|d 14.09.2008
|g CNI
|k CNI
|l Center of Nanoelectronic Systems for Information Technology
|x 1
|z 381
920 1 _ |0 I:(DE-Juel1)VDB41
|d 31.12.2006
|g ISG
|k ISG-1
|l Institut für Halbleiterschichten und Bauelemente
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|g JARA
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 3
970 _ _ |a VDB:(DE-Juel1)82546
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB381
981 _ _ |a I:(DE-Juel1)PGI-9-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21