001     52566
005     20230426083101.0
017 _ _ |a This version is available at the following Publisher URL: http://prb.aps.org
024 7 _ |a 10.1103/PhysRevB.74.094402
|2 DOI
024 7 _ |a WOS:000240871700029
|2 WOS
024 7 _ |a 2128/1447
|2 Handle
037 _ _ |a PreJuSER-52566
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Picozzi, S.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a First-principles stabilization of an unconventional collinear magnetic ordering in distorted manganites
260 _ _ |a College Park, Md.
|b APS
|c 2006
300 _ _ |a 094402
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review B
|x 1098-0121
|0 4919
|v 74
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a First-principles calculations have been performed for different collinear magnetic orderings in orthorhombic manganites, such as HoMnO3, TbMnO3, and YMnO3, showing large GdFeO3-like distortions. Our results suggest that the AFM-E type ordering, experimentally observed in HoMnO3 and recently proposed from model Hamiltonian studies, is indeed the magnetic ground state. Its stability is strongly connected with octahedral distortions and points to the relevance of structural more than chemical effects. The calculated exchange constants, extracted from a Heisenberg model used to fit the first-principles total energies, show that the ferromagnetic in-plane nearest-neighbor coupling is reduced compared to less-distorted manganites, such as LaMnO3. In parallel, the antiferromagnetic next-nearest-neighbor coupling along planar Mn-O-O-Mn paths in highly distorted manganites plays a relevant role in the stabilization of the AFM-E spin configuration. In agreement with experiments, the density of states shows that this phase is insulating with an indirect band gap of similar to 0.5 eV.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
542 _ _ |i 2006-09-01
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Yamauchi, K.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Bihlmayer, G.
|b 2
|u FZJ
|0 P:(DE-Juel1)130545
700 1 _ |a Blügel, S.
|b 3
|u FZJ
|0 P:(DE-Juel1)130548
773 1 8 |a 10.1103/physrevb.74.094402
|b American Physical Society (APS)
|d 2006-09-01
|n 9
|p 094402
|3 journal-article
|2 Crossref
|t Physical Review B
|v 74
|y 2006
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.74.094402
|g Vol. 74, p. 094402
|p 094402
|n 9
|q 74<094402
|0 PERI:(DE-600)2844160-6
|t Physical review / B
|v 74
|y 2006
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.74.094402
|u http://hdl.handle.net/2128/1447
856 4 _ |u https://juser.fz-juelich.de/record/52566/files/82642.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/52566/files/82642.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/52566/files/82642.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/52566/files/82642.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:52566
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |d 31.12.2006
|g IFF
|k IFF-TH-I
|l Theorie I
|0 I:(DE-Juel1)VDB30
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
920 1 _ |0 I:(DE-Juel1)VDB1045
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)82642
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)VDB881
999 C 5 |a 10.1088/0034-4885/69/3/R06
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.73.583
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature02018
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.95.087206
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ic0011009
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.82.3871
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.50.978
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.100.545
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.90.247203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.68.060403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.24.864
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/epl/i2000-00218-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.62.6774
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/9/4/002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.60.10763
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ic990921e
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.60.7309
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.65.064445
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 N. Hamada
|2 Crossref
|t Spectroscopy of Mott Insulators and Correlated metals
|o N. Hamada Spectroscopy of Mott Insulators and Correlated metals
999 C 5 |a 10.1103/PhysRevB.56.12154
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.53.7158
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21