000052667 001__ 52667
000052667 005__ 20240708132750.0
000052667 0247_ $$2DOI$$a10.1088/0022-3727/39/15/015
000052667 0247_ $$2WOS$$aWOS:000239578800029
000052667 037__ $$aPreJuSER-52667
000052667 041__ $$aeng
000052667 082__ $$a530
000052667 084__ $$2WoS$$aPhysics, Applied
000052667 1001_ $$0P:(DE-Juel1)VDB58101$$aRamachandran, K.$$b0$$uFZJ
000052667 245__ $$aModelling of arc behaviour inside a F4 APS torch
000052667 260__ $$aBristol$$bIOP Publ.$$c2006
000052667 300__ $$a3323 - 3331
000052667 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000052667 3367_ $$2DataCite$$aOutput Types/Journal article
000052667 3367_ $$00$$2EndNote$$aJournal Article
000052667 3367_ $$2BibTeX$$aARTICLE
000052667 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000052667 3367_ $$2DRIVER$$aarticle
000052667 440_0 $$03700$$aJournal of Physics D - Applied Physics$$v39$$x0022-3727
000052667 500__ $$aRecord converted from VDB: 12.11.2012
000052667 520__ $$aThe plasma arc inside the F4 torch used for atmospheric plasma spraying is characterized by means of analytical and numerical methods. A simplified analytical model is formulated to understand the physical behaviour of the plasma arc. A three-dimensional numerical model is developed to simulate the realistic plasma arc flow inside the torch. At a given torch power and gas flow rate, possible combinations of the arc core radius and arc length are predicted. The thermodynamic principle of minimum entropy production is used to determine the combination of arc core radius and arc length, which corresponds to the actual physical situation of the arc inside the torch. The effect of arc current and gas flow rate on the plasma arc characteristics is clarified. The effect of hydrogen content in the plasma gas on its velocity and temperature profiles at the nozzle exit is shown. Predicted torch efficiencies are comparable to measured ones. The results of the numerical model are similar to that an analytical model. Previously published experimental and numerical results support part of the present results.
000052667 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000052667 588__ $$aDataset connected to Web of Science
000052667 650_7 $$2WoSType$$aJ
000052667 7001_ $$0P:(DE-Juel1)VDB58102$$aMarqués, J.-L.$$b1$$uFZJ
000052667 7001_ $$0P:(DE-Juel1)129670$$aVaßen, R.$$b2$$uFZJ
000052667 7001_ $$0P:(DE-Juel1)129666$$aStöver, D.$$b3$$uFZJ
000052667 773__ $$0PERI:(DE-600)1472948-9$$a10.1088/0022-3727/39/15/015$$gVol. 39, p. 3323 - 3331$$p3323 - 3331$$q39<3323 - 3331$$tJournal of physics / D$$v39$$x0022-3727$$y2006
000052667 8567_ $$uhttp://dx.doi.org/10.1088/0022-3727/39/15/015
000052667 909CO $$ooai:juser.fz-juelich.de:52667$$pVDB
000052667 9131_ $$0G:(DE-Juel1)FUEK402$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000052667 9141_ $$y2006
000052667 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000052667 9201_ $$0I:(DE-Juel1)VDB5$$d31.12.2006$$gIWV$$kIWV-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000052667 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x1
000052667 970__ $$aVDB:(DE-Juel1)82852
000052667 980__ $$aVDB
000052667 980__ $$aConvertedRecord
000052667 980__ $$ajournal
000052667 980__ $$aI:(DE-Juel1)IEK-1-20101013
000052667 980__ $$aI:(DE-82)080011_20140620
000052667 980__ $$aUNRESTRICTED
000052667 981__ $$aI:(DE-Juel1)IMD-2-20101013
000052667 981__ $$aI:(DE-Juel1)IEK-1-20101013
000052667 981__ $$aI:(DE-Juel1)VDB1047