001     52667
005     20240708132750.0
024 7 _ |2 DOI
|a 10.1088/0022-3727/39/15/015
024 7 _ |2 WOS
|a WOS:000239578800029
037 _ _ |a PreJuSER-52667
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Ramachandran, K.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB58101
245 _ _ |a Modelling of arc behaviour inside a F4 APS torch
260 _ _ |a Bristol
|b IOP Publ.
|c 2006
300 _ _ |a 3323 - 3331
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Physics D - Applied Physics
|x 0022-3727
|0 3700
|v 39
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The plasma arc inside the F4 torch used for atmospheric plasma spraying is characterized by means of analytical and numerical methods. A simplified analytical model is formulated to understand the physical behaviour of the plasma arc. A three-dimensional numerical model is developed to simulate the realistic plasma arc flow inside the torch. At a given torch power and gas flow rate, possible combinations of the arc core radius and arc length are predicted. The thermodynamic principle of minimum entropy production is used to determine the combination of arc core radius and arc length, which corresponds to the actual physical situation of the arc inside the torch. The effect of arc current and gas flow rate on the plasma arc characteristics is clarified. The effect of hydrogen content in the plasma gas on its velocity and temperature profiles at the nozzle exit is shown. Predicted torch efficiencies are comparable to measured ones. The results of the numerical model are similar to that an analytical model. Previously published experimental and numerical results support part of the present results.
536 _ _ |a Rationelle Energieumwandlung
|c P12
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK402
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Marqués, J.-L.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB58102
700 1 _ |a Vaßen, R.
|b 2
|u FZJ
|0 P:(DE-Juel1)129670
700 1 _ |a Stöver, D.
|b 3
|u FZJ
|0 P:(DE-Juel1)129666
773 _ _ |a 10.1088/0022-3727/39/15/015
|g Vol. 39, p. 3323 - 3331
|p 3323 - 3331
|q 39<3323 - 3331
|0 PERI:(DE-600)1472948-9
|t Journal of physics / D
|v 39
|y 2006
|x 0022-3727
856 7 _ |u http://dx.doi.org/10.1088/0022-3727/39/15/015
909 C O |o oai:juser.fz-juelich.de:52667
|p VDB
913 1 _ |k P12
|v Rationelle Energieumwandlung
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK402
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2006
|g IWV
|k IWV-1
|l Werkstoffsynthese und Herstellungsverfahren
|0 I:(DE-Juel1)VDB5
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l Jülich-Aachen Research Alliance - Energy
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)82852
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)VDB1047


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21