000052903 001__ 52903
000052903 005__ 20200423204353.0
000052903 0247_ $$2DOI$$a10.1029/2005WR004014
000052903 0247_ $$2WOS$$aWOS:000236349200002
000052903 0247_ $$2Handle$$a2128/20179
000052903 037__ $$aPreJuSER-52903
000052903 041__ $$aeng
000052903 082__ $$a550
000052903 084__ $$2WoS$$aEnvironmental Sciences
000052903 084__ $$2WoS$$aLimnology
000052903 084__ $$2WoS$$aWater Resources
000052903 1001_ $$0P:(DE-Juel1)VDB359$$aEnglert, A.$$b0$$uFZJ
000052903 245__ $$aPrediction of velocity statistics in three-dimensional multi-Gaussian hydraulic conductivity fields
000052903 260__ $$aWashington, DC$$bAGU$$c2006
000052903 300__ $$aW03418
000052903 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000052903 3367_ $$2DataCite$$aOutput Types/Journal article
000052903 3367_ $$00$$2EndNote$$aJournal Article
000052903 3367_ $$2BibTeX$$aARTICLE
000052903 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000052903 3367_ $$2DRIVER$$aarticle
000052903 440_0 $$05958$$aWater Resources Research$$v42$$x0043-1397
000052903 500__ $$aRecord converted from VDB: 12.11.2012
000052903 520__ $$aTo study statistics of velocity fields in three-dimensional heterogeneous multi-Gaussian saturated hydraulic conductivity fields and the accuracy of their prediction, we performed high-resolution Monte Carlo ( MC) analyses. The MC analyses included variances of the log hydraulic conductivity in the range of 0.5 <= sigma(2)(Y) <= 3.0 and anisotropy ratios in the range of 0.017 <= e <= 1. The statistics of the velocity fields from the MC analyses are compared with analytical solutions of the first- and second-order approximations of the stochastic flow equation. This paper shows that the second-order approximations fit significantly better to the univariate statistics of the Darcy velocity from the MC analyses. For isotropic cases the second-order approximations correspond fairly well to the univariate statistics of the velocity. For anisotropic cases the accordance is given only for the mean velocity and the variance of the transverse vertical component of the velocity. The MC analyses show that the spatial correlation of the velocity decreases more rapidly with increasing sigma(2)(Y). This was more pronounced for the anisotropic than for the isotropic case. The negative correlations, in absolute terms, of the transverse velocity components simultaneously decrease with increasing sigma(2)(Y). This is in contrast to the first- order approximation of the spatial correlations of the velocity. It is assumed that the discrepancies between approximate solutions of the stochastic flow equation and the results of the MC analyses are strongly dependent on the nonnormality of the probability density distributions of the velocity.
000052903 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000052903 588__ $$aDataset connected to Web of Science
000052903 650_7 $$2WoSType$$aJ
000052903 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b1$$uFZJ
000052903 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b2$$uFZJ
000052903 773__ $$0PERI:(DE-600)2029553-4$$a10.1029/2005WR004014$$gVol. 42, p. W03418$$pW03418$$q42<W03418$$tWater resources research$$v42$$x0043-1397$$y2006
000052903 8567_ $$uhttp://dx.doi.org/10.1029/2005WR004014
000052903 8564_ $$uhttps://juser.fz-juelich.de/record/52903/files/Englert_et_al-2006-Water_Resources_Research.pdf$$yOpenAccess
000052903 8564_ $$uhttps://juser.fz-juelich.de/record/52903/files/Englert_et_al-2006-Water_Resources_Research.gif?subformat=icon$$xicon$$yOpenAccess
000052903 8564_ $$uhttps://juser.fz-juelich.de/record/52903/files/Englert_et_al-2006-Water_Resources_Research.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000052903 8564_ $$uhttps://juser.fz-juelich.de/record/52903/files/Englert_et_al-2006-Water_Resources_Research.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000052903 8564_ $$uhttps://juser.fz-juelich.de/record/52903/files/Englert_et_al-2006-Water_Resources_Research.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000052903 909CO $$ooai:juser.fz-juelich.de:52903$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000052903 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000052903 9141_ $$y2006
000052903 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000052903 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000052903 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000052903 9201_ $$0I:(DE-Juel1)VDB50$$d31.12.2006$$gICG$$kICG-IV$$lAgrosphäre$$x0
000052903 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x1
000052903 970__ $$aVDB:(DE-Juel1)83234
000052903 980__ $$aVDB
000052903 980__ $$aConvertedRecord
000052903 980__ $$ajournal
000052903 980__ $$aI:(DE-Juel1)IBG-3-20101118
000052903 980__ $$aI:(DE-82)080011_20140620
000052903 980__ $$aUNRESTRICTED
000052903 9801_ $$aFullTexts
000052903 981__ $$aI:(DE-Juel1)IBG-3-20101118
000052903 981__ $$aI:(DE-Juel1)VDB1047