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[1] To study statistics of velocity fields in three-dimensional heterogeneous multi-
Gaussian saturated hydraulic conductivity fields and the accuracy of their prediction, we
performed high-resolution Monte Carlo (MC) analyses. The MC analyses included
variances of the log hydraulic conductivity in the range of 0.5 � sY

2 � 3.0 and anisotropy
ratios in the range of 0.017 � e � 1. The statistics of the velocity fields from the MC
analyses are compared with analytical solutions of the first- and second-order
approximations of the stochastic flow equation. This paper shows that the second-order
approximations fit significantly better to the univariate statistics of the Darcy velocity
from the MC analyses. For isotropic cases the second-order approximations correspond
fairly well to the univariate statistics of the velocity. For anisotropic cases the accordance
is given only for the mean velocity and the variance of the transverse vertical
component of the velocity. The MC analyses show that the spatial correlation of the
velocity decreases more rapidly with increasing sY

2. This was more pronounced for the
anisotropic than for the isotropic case. The negative correlations, in absolute terms, of the
transverse velocity components simultaneously decrease with increasing sY

2. This is in
contrast to the first-order approximation of the spatial correlations of the velocity. It is
assumed that the discrepancies between approximate solutions of the stochastic flow
equation and the results of the MC analyses are strongly dependent on the nonnormality of
the probability density distributions of the velocity.
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1. Introduction

[2] It is well established that the transport of substances
in groundwater is strongly determined by the spatial het-
erogeneity of the groundwater flow velocity, which is
highly dependent on the heterogeneity of the hydraulic
conductivity [e.g., Mackay et al., 1986; Leblanc et al.,
1991; Boggs et al., 1992; Vereecken et al., 2000]. Therefore
it is indispensable to incorporate effects of spatial hetero-
geneity in predictions of flow and transport in groundwater.
[3] Since it is impossible to determine the structure of

an aquifer in a deterministic sense, based on point-scale
information derived from borehole measurements, the
heterogeneity of an aquifer is characterized in a geostatistical
sense. As a consequence, research is aimed at linking geo-
statistical parameters of the hydraulic conductivity field with
those of the Darcy velocity and head fields. In this field of
research several techniques, each with its specific advantages,
are described in the literature. In this study we focus on the
evaluation of approximate solutions of the stochastic differ-
ential flow equation using Monte Carlo analyses, both based
on multi-Gaussian log hydraulic conductivity fields.
[4] Over the last thirty years, stochastic flow equations

were developed that quantify the effect of spatial heteroge-

neity of the hydraulic conductivity, K, on the Darcy veloc-
ity, ~q, and total head, H. Perturbation approaches were
applied to Darcy’s law and the continuity equation in order
to find closed form functions deriving the geostatistical
parameters of ~q from those of the K [e.g., Dagan, 1989;
Gelhar, 1993; Zhang, 2002; Rubin, 2003]. These functions
are approximate solutions which were obtained after a
truncation of the perturbated Darcy’s law and continuity
equation. Extensive work has been carried out on first-order
approximations [e.g., Gelhar and Axness, 1983; Dagan,
1984; Rubin and Dagan, 1992; Neuman and Orr, 1993;
Russo, 1995; Hsu et al., 1996; Bonilla and Cushman, 2000],
less attention has been paid to second-order approximations
of the perturbated equations in two (2-D) [Hsu et al., 1996],
and three dimensions (3-D) [Deng and Cushman, 1995; Hsu
and Neuman, 1997; Deng and Cushman, 1998]. The
theoretical validity of the approximate solutions of the
stochastic flow equation was established for small values
of the variance of the logarithm of the hydraulic conduc-
tivity, sY

2. The validity of these approximate solutions for
large values of sY

2 is in many cases unclear.
[5] In order to test the validity of the approximate

solutions for higher sY
2, Monte Carlo (MC) analyses are

an appropriate tool. In MC analysis several realizations of
the random space function, which characterizes the spatial
variability of the hydraulic conductivity field, are generated.
Subsequently the flow equation in these realizations is
solved numerically. Statistical analysis of ~q, including all
of these realizations, allows for detailed study of the
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univariate and spatial statistics of the components of the
velocity vector in terms of ensemble parameters. In the
following, the mean flow direction is denoted as longitudi-
nal direction, l direction. Perpendicular to the mean flow
direction are the transverse horizontal, th direction, and
the transverse vertical direction, tv direction. Furthermore

e =
lv

lh

is the anisotropy ratio with lv being the correlation

length in tv direction and lh being the correlation length in
l and th directions, which are defined to be equal.
[6] For 2-D isotropic hydraulic conductivity fields it was

shown that the first-order approximation of the effective
hydraulic conductivity is correct [e.g., Matheron, 1967;
Janković et al., 2003b]. Using a MC approach, it was also
shown for 2-D isotropic hydraulic conductivity fields [e.g.,
Bellin et al., 1992; Salandin and Fiorotto, 1998; Hassan et
al., 1998] that the estimation of the flow velocity variance is
accurate up to sY

2 = 1 using first order approximation and up
to sY

2 = 2 using second-order approximation. Moreover the
first order approximation of the correlation of the flow
velocity is independent of sY

2 and exact for sY
2 � 1. In

addition it was found that for higher sY
2 the correlation

lengths of the flow velocity decrease with increasing sY
2.

[7] The results of the 2-D simulations and approximations
of flow in a heterogeneous conductivity field can be extrap-
olated to real 3-D flow and conductivity fields but only in a
qualitative sense [e.g., Russo, 1998]. Because of the increase
of the numerical demands with the increase of the dimen-
sionality of the flow problem, only a few studies report on the
validity of approximate solutions of the stochastic differential
flow equation in 3-D cases (see Table 1).
[8] For 3-D isotropic hydraulic conductivity fields it was

shown that first-order estimates of the mean Darcy velocity
are valid up to sY

2 � 1 and valid up to at least sY
2 = 7 for

second-order estimates [Ababou et al., 1989; Tompson and
Gelhar, 1990; Chin and Wang, 1992; Dykaar and Kitanidis,
1992; Neuman et al., 1992]. The first-order estimates of the
covariances of the Darcy velocity components are valid for
sY
2 � 0.5. The validity of second-order approximations

estimating the covariance of the velocity is still an unre-
solved issue.
[9] For 3-D anisotropic hydraulic conductivity fields it was

shown that the first-order approximation of the mean velocity
is only valid for sY

2 � 0.5 at e� 0.07 [Burr et al., 1994;Naff et
al., 1998a]. Estimates of the mean velocity by second-order
approximation are accurate at least up to sY

2 = 0.9 at e = 0.05.
The validity for sY

2 > 0.9 is an unsettled topic. It was also
shown that for sY

2 � 0.18 and e = 0.04, first-order estimates of
the covariance of the longitudinal velocity component in
l direction fit fairly well to results from MC analyses. The

validity of first- and second-order estimates of the covarian-
ces of the transverse velocity components and of the longi-
tudinal component at sY

2 � 0.18 for anisotropic media is still
an unresolved topic. This is of particularly interest, since first-
and second-order approximations deviate stronger for larger
anisotropy and larger sY

2 [Deng and Cushman, 1995;Hsu and
Neuman, 1997; Deng and Cushman, 1998].
[10] The objective of this paper is to systematically eval-

uate the effect of e and sY
2 in 3-D hydraulic conductivity fields

on the flow field statistics and compare them with first- and
second-order approximations. Results ofMC analyses will be
presented for 0.5 � sY

2 � 3.0 and 0.017 � e � 1. Thereto the
following assumptions were made: the log transformed
hydraulic conductivity field is a second order stationary
random space function, i.e. there is no trend in Y and the
covariance between Y values at two different locations
depends only on the separation distance between the loca-
tions. The axes of the spatial correlation are aligned with the
horizontal and vertical directions and the spatial covariance is
isotropic in the horizontal direction. Using an exponential
covariance model to express the covariance CYY in terms of
the separation distance (x), the spatial covariance is given as

CYY xð Þ ¼ s2Y � exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1
lh

� �2

þ x2
lh

� �2

þ x3
lv

� �2
s0

@
1
A ð1Þ

where lh is the correlation length in longitudinal and in
transverse horizontal direction and lv is the correlation
length in transverse vertical direction. The mean hydraulic
gradient and thus the mean flow vector are aligned in the
horizontal direction with the principal axis of the spatial
covariance function. There are no local sinks and sources so
that the flow field is divergence free.
[11] The paper is organized in the following manner: In

Section 2 we present the first- and second-order approxi-
mate solutions of the stochastic flow equation taken from
literature. Subsequently, in section 3, we focus on the MC
analyses including technical issues. Finally, in section 4, the
statistics of the velocity from both MC analyses and the
approximate solutions of the stochastic flow equation are
compared and analyzed.

2. Approximate Solutions of Stochastic Flow
Equation

[12] Below, approximations of the ensemble statistical
parameters of the Darcy velocity based on first-order
(superscript 1) and second-order (superscript 2) approxima-
tions of the perturbated continuity and Darcy equations in

Table 1. Three-Dimensional Monte Carlo Analyses on Velocities From Literature

Source

Preset K Statistics Rating of the MC Analyses

Range of sY
2 Range of e Number of Elements Number of Realizations

Ababou et al. [1989] 1.0–5.29 1 13 
 104 1
Tompson and Gelhar [1990] 1.0–5.29 1 12 
 104 1
Chin and Wang [1992] 0.1–1.5 1 12 
 104 92
Dykaar and Kitanidis [1992] 1–6.0 1 17 
 106 1
Neuman et al. [1992] 0.25–7.0 1 42.9 
 103 500
Burr et al. [1994] 0.04 0.18 11 
 104 25
Naff et al. [1998a] 0.09–0.9 0.05–0.26 90 
 104 900
Present study 0.5–3.0 0.017–1.0 12 
 106 10
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conductivity fields of infinite extent are given. The following
first- and second-order approximations of the mean (mql), the
variances (sq

2) and the spatial covariances (Cq(x)) of the
Darcy velocity correspond to an exponential covariance
model of the logarithm of the hydraulic conductivity (Y).

2.1. First-Order Approximate Solutions

[13] The mean Darcy velocity, (1)mql, is given by Dagan
[1989] by

1ð Þmql
KgJ

¼ 1þ s2Y
6

ð2Þ

for e = 1, and

1ð Þmql
KgJ

¼ 1þ s2Y

 
1

2
� 1

2

e2

1� e2
1

e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

e2
� 1

r
� 1

 !!

ð3Þ

for e < 1, where Kg is the geometric mean of the hydraulic
conductivity and J is the mean hydraulic gradient.
[14] The variance of the longitudinal, (1)sql

2 , the transverse
horizontal, (1)sqth

2 , and the transverse vertical component,
(1)sqtv

2 , of the velocity vector are given by Dagan [1989] for
isotropic and by Russo [1995] for anisotropic cases by

1ð Þs2ql
s2Y KgJ
� 
2 ¼ 8

15
ð4Þ

1ð Þs2qth
s2Y KgJ
� 
2 ¼

1ð Þs2qtv
s2Y KgJ
� 
2 ¼ 1

15
ð5Þ

for e = 1, and

1ð Þs2ql
s2Y KgJ
� 
2 ¼ 1þ 19e3 � 10e5

16e �1þ e2ð Þ2
�
e 13� 4e2ð Þ arcsin 1� e2ð Þ

1
2

h i
16 1� e2ð Þ

1
2 �1þ e2ð Þ2

ð6Þ

1ð Þs2qth
s2Y KgJ
� 
2 ¼ e

16 1� e2ð Þ
1
2 �1þ e2ð Þ2

� e 1� e2
� 
1

2þ2e3 1� e2
� 
1

2

�

þ arcsin 1� e2
� 
1

2

h i
� 4e2 arcsin 1� e2

� 
1
2

h i�
ð7Þ

1ð Þs2qtv
s2Y KgJ
� 
2 ¼ �3e2

4 �1þ e2ð Þ2
þ
e 1þ 2e2ð Þ arcsin 1� e2ð Þ

1
2

h i
4 �1þ e2ð Þ

1
2 �1þ e2ð Þ2

ð8Þ

for e < 1.
[15] The covariance of the longitudinal, (1)Cql(x

0
l), the

transverse horizontal, (1)Cqth(x
0
l), and the transverse vertical

component, (1)Cqtv(x
0
l), of the velocity vector in longitudinal

direction are given by Russo [1995] by

1ð ÞCql x0l
� 


s2Y KgJ
� 
2 ¼

Z þ1

�1

1

2
� r2e

4 1� r2ð Þ þ r2e2ð Þ½ �
3
2

 

� 4� 5r2 þ r4 þ 3r2 � r4
� 


e2
� �!

� 1� jrx0lj
� 


exp �jrx0lj
� 


dr ð9Þ

1ð ÞCqth x0l
� 


s2Y KgJ
� 
2 ¼

Z þ1

�1

r2e 1� r2ð Þ 1� jrx0lj
� 


4 1� r2ð Þ þ r2e2½ �
1
2

� exp �jrx0lj
� 


dr ð10Þ

1ð ÞCqtv x0l
� 


s2Y KgJ
� 
2 ¼

Z þ1

�1

r2e 1� r2ð Þ 1� jrx0lj
� 


4 1� r2ð Þ þ r2e2½ �
3
2

� exp �jrx0lj
� 


dr ð11Þ

for e � 1 where x0l =
xl
lh

is the normalized separation

distance in longitudinal direction.

2.2. Second-Order Approximate Solutions

[16] The mean Darcy velocity, (2)mql, is given by Deng
and Cushman [1995] by

2ð Þmql
KgJ

¼ 1þ 1

2
þ b

� �
s2Y þ 1

2

1

2
þ b

� �2

s4Y

 !
ð12Þ

where b =
1

2a2
(1 � arctan a

e2a
) with a =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1� e2j=e2

p
for e < 1

and b = �1

3
for e = 1.

[17] The variance of the longitudinal, (2)sql
2 , the transverse

horizontal, (2)sqth
2 , and the transverse vertical component,

(2)sqtv
2 , of the velocity vector are given byDeng and Cushman

[1995] by

2ð Þs2ql
s2Y KgJ
� 
2 ¼ 8

15
1þ 7

16
s2Y

� �
ð13Þ

for e = 1, and

2ð Þs2ql
s2Y KgJ
� 
2 ¼

1ð Þs2ql
s2Y KgJ
� 
2 þ s2Y

3

2
þ 3

a2
1� arctan a

e2a

� ��

þ 3

4a4
1� arctan a

e2a

� �2

þ 6

16a2
a2 þ 3

a2

�

þ a2 � 3

e2a3
arctan a

��
ð14Þ

for e < 1, and

2ð Þs2qth ¼
1ð Þ s2qth 1þ 2s2Y

� 

ð15Þ

2ð Þs2qtv ¼
1ð Þ s2qtv 1þ 2s2Y

� 

ð16Þ

for e � 1, with a =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1� e2j=e2

p
.

[18] The above presented analytical expressions of Deng
and Cushman [1995] are second order in sY

2, however,
without second-order head corrections. Deng and Cushman
[1998] revisits the findings of Deng and Cushman [1995],
considering second-order head corrections numerically.
They found out that the second-order head corrections
mainly influence the transverse components of the velocity.
In detail, from Deng and Cushman’s Figure 2 it can be
deduced that the estimation of the variance of the transverse
horizontal velocity component is not affected by second-
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order head corrections in an anisotropic case e = 0.1, but in
the isotropic case e = 1. Furthermore Deng and Cushman’s
Figure 3 shows that the estimation of the variance of the
transverse vertical velocity component is only slightly
affected in the anisotropic case e = 0.1, but clearly in the
isotropic case e = 1. Using second order in sY

2 including
second-order head corrections in the isotropic case as
presented by Deng and Cushman [1998], the variance of
both the transverse horizontal and transverse vertical veloc-
ity component are in between the here presented estimation
based on equation (16) (second order without second-order
head corrections) and the here presented estimation based
on equation (7) (first order).

3. Monte Carlo Analyses

[19] In the following, the MC procedures including the
generation of the hydraulic conductivity fields, numerical
modeling of the velocity fields and the computation of
ensemble parameters are described. Furthermore the reli-
ability of the numerical results are discussed.

3.1. Layout and Computational Procedures

[20] The computational domain used for the MC analyses
included 201 nodes in longitudinal, l, 201 nodes in trans-
verse horizontal, th, and 301 nodes in transverse vertical
direction, tv. The isotropic case departed from this scheme
including only 201 nodes in the transverse vertical direction
(Table 2). Realizations of the random space function,
characterizing the spatial variability of the hydraulic con-
ductivity, were generated with the Kraichnan generator
using 65536 modes [Kraichnan, 1970]. The geometric
mean of the hydraulic conductivity was 1.88 
 10�3 m/s
for all conductivity fields. Five anisotropies (including one
isotropic) and six different sY

2 (ranging from 0.5 to 3.0 in
0.5 steps) were constructed. For each of these 30 cases,
10 fields were generated. The geostatistical input param-
eters for the Kraichnan generator are given in Table 2.
[21] The 3-D stationary flow equation, r(K~xrh~x) = 0

with K~x being the hydraulic conductivity and h~x being
the head at position ~x, was solved numerically, using the
TRACE model [Vereecken et al., 1994]. TRACE uses the
standard Galerkin finite element method (FE) with hex-
agonal isoparametric elements. To solve the FE linear
equations set, a conjugate gradient solver (CG) is used.
The TRACE code is parallelized, and can be run on
massive parallel computers [Seidemann, 1996; Englert et al.,
2004]. The computations were carried out on 32 processors of
the ‘‘Juelich Multi Processor’’ (JUMP) supercomputer (IBM

Regatta p690+ with 1312 Power4+ processors) at the Jülich
research Center.
[22] No-flux Cauchy boundaries at the bottom, the top,

the right and the left hand side of the domain were imposed.
A constant head or Dirichlet condition was imposed at the
front and the back of the domain resulting in a mean
hydraulic gradient of 2.02 
 10�3 for all anisotropic cases
and of 2.00 
 10�3 for the isotropic cases.
[23] The generation of the heterogeneous hydraulic con-

ductivity field with the Kraichnan generator required be-
tween 2600 s and 2800 s. To solve the 3-D flow equation
1400 s to 2000 s of computation time was needed. About
8000 to 13000 CG iterations were needed to reach the
convergence criterion of 1 
 10�8 m. The number of CG
iterations and the computation time increased with increas-
ing sY

2.

3.2. Statistical Parameters

[24] Statistical parameters of a variable z at the position xi
were computed using the following formulas:

mz ¼
Pn

i¼1 z xið Þ
n

ð17Þ

s2z ¼
Pn

i¼1 z xið Þ � mzð Þ2

n� 1
ð18Þ

gz ¼
n

n� 1ð Þ n� 2ð Þ

Pn
i¼1 z xið Þ � mzð Þ3

s3z
ð19Þ

hz ¼
n nþ 1ð Þ

n� 1ð Þ n� 2ð Þ n� 3ð Þ

Pn
i¼1 z xið Þ � mzð Þ4

s4z

� 3 n� 1ð Þ2

n� 2ð Þ n� 3ð Þ ð20Þ

Cz xð Þ ¼ 1

m

Xm
i¼1

z xið Þ � z xi þ xð Þð Þ � m z xið Þð Þ � m z xi þ xð Þð Þ ð21Þ

rz xð Þ ¼ Cz xð Þ
s z xið Þð Þ � s z xi þ xð Þð Þ ð22Þ

where n is the number of observations, m is the number of
paired observations, m is the arithmetic mean, s2 is the
variance, g is the skewness, h is the kurtosis, C(x) the
spatial covariance and r(x) the spatial correlation of
the variable z for the separation vector x.
[25] Nonparametric estimates of a representative value

and of the spreading of the distribution were estimated from
the median and the squared absolute value of half the
difference between the 15.87 percentile and the 84.13
percentile. For a normal distribution, these quantile based
estimates correspond with m and s2. For nonparametrical
estimation of spatial correlations an indicator approach was
used, based on the following transform:

ind xið Þ ¼
1 if z xið Þ � cut

0 otherwise

8<
: ð23Þ

Table 2. Dimensions of the Modeling Domains, Grids, and Spatial

Correlation Lengths of the Hydraulic Conductivitya

e =
lv

lh

l Discretization
Size of the
Domain

Hor., m Ver., m Hor., m Ver., m Hor., m Ver., m

0.017 11.8 0.2 1 0.05 200 15
0.04 5 0.2 1 0.05 200 15
0.1 10 1 1 0.05 200 15
0.2 5 1 1 0.05 200 15
1 1 1 0.25 0.25 50 50

aThe correlation lengths l, lv, and lh correspond to an exponential
correlation function; Hor. indicates horizontal, and Ver. indicates vertical.
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where indi is the transformed value of z(xi) for a given cutoff
value cut.
[26] In the scope of the MC analysis statistical parameters

were derived for single realizations and for all realizations
of a certain case, where the parameters are based on the
values of, in our case, ten realizations. The latter one are
called ensemble parameters. To quantify the statistical
convergence of a particular ensemble parameter at a 95%
confidence interval the ‘‘jackknife method’’ [Wonnacott and
Wonnacott, 1985] was used. Statistical computations were
carried out using GSLIB [Deutsch and Journel, 1998] and
SAS 8.2 (SAS Institute Inc., North Carolina) software.

3.3. Generated Hydraulic Conductivity Fields

[27] To illustrate the reliability of the stochastically gen-
erated heterogeneous K fields, the case with the input
parameters Y = �6.277 ln(m/s), sY

2 = 3, lh = 11.8 m and
lv = 0.2 m was analyzed in detail.
[28] The ensemble mean of the generated Y fields was Y =

�6.283 ln(m/s), which corresponds to a deviation from
the preset mean of 0.10%. Within the ten realizations the
maximummean was Y=�6.295 ln(m/s), the minimummean
was Y = �6.360 ln(m/s), which corresponds to a maximum
deviation from the preset mean of 1.32%. The ensemble sY

2

was 3.009, which corresponds to a deviation from the preset
sY
2 of 0.30%. The maximum sY

2 was 3.008, the minimum sY
2

was 2.943 which corresponds to a maximum deviation from
the preset variance of 0.26%.
[29] It could be observed that there was a very good ac-

cordance between the generated Y field and the a priori pre-
scribed covariances for the horizontal directions (Figures 1a
and 1b). In the vertical direction (Figure 1c), a very good fit
between the ensemble covariance of the generated Y fields
and the a priori prescribed covariances was found up to a lag
distance of about ten meters. At higher lag distances the
ensemble correlations began to oscillate but with a very small
amplitude.
[30] The presented case was the most critical one amongst

all the 30 cases of this study. The other 29 cases showed
even smaller deviations from the prescribed parameters.

3.4. Convergence and Accuracy of Flow Simulation

[31] To control the numerical convergence of the flow
simulations we analyzed the convergence behavior of the
velocity statistics of three selected single realizations: e =
0.017 at sY

2 = 1, e = 0.017 at sY
2 = 3 and e = 1 at sY

2 = 3. For
these realizations we successively decreased the conver-
gence criteria within the CG until the statistical parameters
of the velocity converged. This occurred at a CG conver-
gence criteria of 1 
 10�8 m. Flow simulations using a
more stringent convergence criteria for the CG of 1
 10�14 m
led to identical velocity statistics within at least three signif-
icant digits.
[32] To measure the accuracy of the flow simulations the

relative mass balance error was considered first for the entire
domain and second for every element in the domain. The
mass balance, defined as (inflow � outflow)/(total volume),
was calculated for all cases and all realizations. The relative
mass balance error for the entire domain increased with
increasing sY

2, but was not influenced by the anisotropy ratio
e. The mean relative mass balance error for the entire domain
was 9 
 10�5% at sY

2 = 0.5 and was 5 
 10�4% at sY
2 = 3.

Within the 300 realizations the maximum of the relative mass

balance error for the entire domain was 4 
 10�4% and 3 

10�3% for sY

2 = 0.5 and sY
2 = 3 respectively.

[33] On the basis of velocity data at the nodes of lateral
surfaces of an element, the mean velocities normal to the
surfaces of single elements were calculated. We then
standardized the mean velocities by the corresponding
area of an element surface and we calculated the resulting
velocities into or out of an element. Subsequently the
local mass balances were calculated for every single element
by multiplying the afore mentioned velocities times the time
step (0.1 d) used in the global mass balance computation.
Evaluating only the inner core of the domain (see section 3.5)
the mean relative mass balance error for single elements was

Figure 1. Preset covariance function of Y and ensemble
covariances from generated Y fields using the Kraichnan
generator shown for the three directions of the modeling
domain in the case e = 0.017 and s2 = 3.0.
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1.9
 10�4% at sY
2 = 0.5 and was 7.7
 10�4% at sY

2 = 3. The
maximum relative mass balance error was 5.4 
 10�3% and
1.8 
 10�1% for sY

2 = 0.5 and sY
2 = 3 respectively. These

values were assumed to be small enough to avoid a signif-
icant impact on the velocity statistics.

3.5. Mean Gradient, Head Fluctuations, and
Boundary Effects

[34] It is well known that boundary conditions, no flow
boundaries as well as constant head boundaries, have a
detectable impact on the statistics of the pressure head as
well as of the Darcy velocity in the vicinity of the bound-

aries. In this context Rubin and Dagan [1988] and Rubin
and Dagan [1989] showed the influence of boundary
conditions on head variabilities in a flow domain using a
first order in sY

2 analytical solution of the stochastic flow
equation for 2-D isotropic cases. Bellin et al. [1992], Oliver
and Christakos [1996], Salandin and Fiorotto [1998], and
Hassan et al. [1998], for example, observed boundary
effects on head and flux variabilities using MC analyses
for 2-D cases.
[35] Naff et al. [1998a] shows boundary effects in the

numerically simulated velocity fields in detail for 3-D
anisotropic hydraulic conductivity fields. They demonstrated
that the statistics of the longitudinal component of the
velocity are not visibly influenced by boundary conditions
nor in longitudinal neither in transverse transects. The
variances of both transverse components of the velocity
are affected in longitudinal direction, converging toward
zero at the constant head boundaries. The variance of the
transverse horizontal component is affected in transverse
horizontal direction, converging toward zero at the no flux
boundaries. It is not affected in transverse vertical direction.
The variance of the transverse vertical component is affected
in transverse vertical direction, converging toward zero at
the no flux boundaries. It is not affected in transverse
horizontal direction.
[36] In our study the influence of the boundary conditions

on head, mean gradient and velocity statistics were analyzed
as follows: In a first step the statistics of the head and of the
velocity components were calculated in each realization for
every nodal surface parallel to a lateral boundary. In a
second step ensemble mean and variance in a surface at a
certain distance from the boundary were calculated from the
velocity statistics of the single realizations. The ensemble
gradients and head fluctuations are directly calculated based
on the values of all realizations within a certain case. The
computed ensemble parameters of each slice were based on
at least 100000 single values. In the following the focus is
first on boundary effects on head fluctuations and mean
gradients and second on velocity statistics.
[37] The ensemble mean gradient of the entire domain

was computed by subtracting the ensemble mean pressure
head at the front plane from the ensemble mean pressure
head at the back plane of the domain and dividing the
difference by the length of the entire domain. Therefore
the mean gradient of the entire domain is predefined by the
models’ extend and constant head boundary conditions at
the front and the back of the domain. These data were used
to set up an equation describing the mean pressure head as a
linear function of the position along the mean flow direction
(ql direction). Consequently the head fluctuations for every
plane parallel to the front and back planes of the domain are
the mean squared residuals of the individual head values
within a plane related to the corresponding pressure head
value defined by the linear function. For the case e = 0.017
and sY

2 = 1 ensemble mean gradients for the entire domain
and the corresponding head fluctuations are shown in
Figure 2a. It shows, as expected, that the head fluctuations
are strongly influenced by the constant head boundaries
converging to zero at these boundaries.
[38] Evaluating only the inner core of the domain (see last

paragraph of this section) mean gradient and head fluctua-
tions were computed slicewise and parallel to the mean flow

Figure 2. Ensemble mean gradient and ensemble pressure
head fluctuations in nodal surfaces as a function of the
position in the domain, based on a heterogeneous K field
with e = 0.017 and sY

2 = 1: (a) in the longitudinal direction,
(b) in the transverse horizontal direction, and (c) in the
transverse vertical direction. The abscissae represent the
normalized position I; in Figures 2a and 2b, I = x/lh, and in
Figure 2c, I = x/lv.
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direction. Mean pressure heads were computed at the front
line and the back line of each slice. For each slice these
mean pressure head values and the distance between front
and back of the inner core were subsequently used to set up
an equation describing the mean pressure head as a linear
function of the position along the ql direction. Consequently
the mean gradients are equal to the slopes of these equations
and the head fluctuations are represent by the mean squared
residuals of the individual head values related to the
corresponding value defined by the linear equations.
Figures 2b and 2c display the resulting ensemble gradients
and ensemble head fluctuations as a function of the
position in th direction and tv direction, respectively.

Figures 2b and 2c show that the ensemble gradient and
the ensemble head fluctuations are still varying with the
position in th direction as well as in tv direction. This is
more pronounced in th direction than in tv direction, which
is due to the much smaller number of integral scales of Y in
the horizontal direction. The ensemble mean gradient for the
inner core (not shown) shows only 0.1% deviation from the
ensemble mean gradient of the entire domain.
[39] The previous shown analyses of ensemble gradients

and ensemble head fluctuations was performed for e = 1 and
e = 0.017, including sY

2 = 1.0 and sY
2 = 3.0. An integrated

analysis of the results shows that with increasing sY
2 and

decreasing e, the head fluctuations increase from 1,78 

10�6 m2 at e = 1 and sY

2 = 1 to 1.11 
 10�4 m2 at e = 0.017
and sY

2 = 3. Differences between the preset mean gradient
and the ensemble mean gradient of the inner core are higher
for the isotropic than for the strongly anisotropic case with a
maximum deviation of 2.25% at e = 1 and sY

2 = 3.
[40] In Figure 3 the variances of the velocity components

in nodal surfaces are presented for the different directions as
a function of the normalized position relative to the point of
origin of the velocity field for the case sY

2 = 1 and e = 0.017.
Figure 3a shows that in the longitudinal direction with
constant head boundaries the variances of the transverse
components are affected up to 2 lh and converge toward 0
at the edges. The variance of the longitudinal component is
not visibly affected. From Figures 3b and 3c, it can be
observed that in the transverse directions with impervious
boundaries the variance of the longitudinal component of
the velocity is unaffected. Contrary the horizontal transverse
component is affected in horizontal transverse direction, th
direction, up to 2 lh and the vertical transverse component
is affected in vertical transverse direction, tv direction, up to
10 lv. Both converge toward 0 at the edges.
[41] The previous analysis was performed for each case in

the MC analyses, and the impact of variations in sY
2 and e on

boundary effects was studied. In general, there were only
negligible boundary effects on s2(ql) in th and tv direction,
on s2(qtv) in th direction, and on s2(qth) in tv direction. The
most pronounced impact of boundary conditions was on

Figure 3. Ensemble variances of the Darcy velocity
vector components in nodal surfaces as a function of the
position in the domain, based on a heterogeneous K field
with e = 0.017 and sY

2 = 1: (a) in the longitudinal direction,
(b) in the transverse horizontal direction, and (c) in the
transverse vertical direction. The abscissae represent the
normalized position I; in Figures 3a and 3b, I = x/lh, and in
Figure 3c, I = x/lv.

Figure 4. Effect of the variance of the logarithm of the
hydraulic conductivity, sY

2, on the estimated normalized
variances of the vertical transverse component of the Darcy
velocity in horizontal nodal surfaces parallel to the mean flow
direction as a function of the distance from the bottom
boundary. The abscissa represents the normalized position I =
x/lv. The anisotropy of the K fields is e = 0.017.
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s2(qtv) in tv direction (Figure 4). The range of influence of
the no-flux boundaries increases with increasing sY

2 and
with increasing anisotropy (decreasing e). The influence in
range increases from 2 lv at e = 1 and sY

2 = 0.5 to 15 lv at e =
0.017 and sY

2 = 3.0. The effect of no-flux boundaries on
s2(qth) in th direction increases with increasing sY

2 and
decreases with increasing anisotropy. The influence range
is 0.5 lh at e = 0.017 and sY

2 = 0.5 and 4 lh at e = 1 and sY
2 = 3.

The constant head boundaries, edges in l direction, influence
the variances of all components of the Darcy velocity vector.
Both s2(qth) and s2(qtv) are converging to 0 within 2 lh in
l direction. This behavior is not affected by variations in sY

2

and e. Contrary at higher sY
2 (not visible at the relative small

sY
2 of Figure 3a) s2(ql) increases toward the edge (Figure 5).

This effect increases with increasing sY
2 and decreases with

increasing anisotropy. For e = 0.017 and sY
2 = 0.5 the

influence of the constant head boundary on s2(ql) is negligi-
ble, whereas the range of influence increases to 4 lh for e = 1
and sY

2 = 3 (Figure 5).
[42] To exclude the boundary effects, only velocities

within an inner core of the entire flow domains were
considered. This inner core was 100 m in l direction, 100 m
in th direction and 5 m in tv direction for all the anisotropic
cases and it was 37.5 m in all directions for the isotropic
cases. For all the cases with e = 0.017, e = 0.04 and e = 1 this
ensures negligible boundary effects on the inner core. For
the cases with e = 0.1 and e = 0.2 the exclusion of boundary
effects is ensured up to sY

2 = 1.0 for all components of the
velocity. For higher sY

2 the tv component is somewhat under-
estimated. Contrary the influence of boundaries on the l and
th components of the velocity are again negligible within the
inner core.

4. Results

[43] After excluding the boundary effects, the Monte
Carlo analyses allow for a detailed statistical characteriza-
tion of the velocity as a function of the variance and the
correlation lengths in horizontal and vertical direction of
the logarithm of the hydraulic conductivity, Y. Within the

reliability discussed in Section Monte Carlo Analyses, this
permits a comparison with first- and second-order approx-
imate solutions of the stochastic flow equation. In the
following the results are discussed, first with a focus on
univariate velocity statistics and second on spatial velocity
statistics.

4.1. Univariate Velocity Statistics

[44] The MC analyses showed that with increasing sY
2 and

increasing anisotropy the probability density function of ql
exhibited an increasing asymmetry with a tail to the right.
This was expressed by an increase in skewness from 1.3 at e =
1 and sY

2 = 0.5 toward a value of 9.9 at e = 0.017 and sY
2 = 3.0

(see Figure 6). Simultaneously the kurtosis increased from
3.1 toward a value of 188 (see Figure 7a). Excluding
occasionally negative ql values, the accordant values for the
skewness and kurtosis of log-transformed values of ql ranged
between �0.2 and �0.03. This suggests that the ql distribu-
tion is better described by a log normal than a normal
distribution. However, this could not be confirmed with the
Kolmogorov Smirnov test for normality. In this context it is
important to consider that with increasing sY

2 and decreasing
anisotropy the probability of negative values for the longitu-
dinal velocity component increases. For sY

2 < 1.5 the prob-
ability for negative ql values was undetectable small. For sY

2 =
3, the probability increased to 0.00002% at e = 0.017 and to
0.008% in the isotropic case. Negative ql values are well
known from other 2-D and 3-D MC analyses on flow in
heterogeneous media including sY

2 > 1.5 [e.g., Tompson and
Gelhar, 1990; Salandin and Fiorotto, 1998; Janković et al.,
2003a]. They can occur in cases where a relatively high
conductive flow path is surrounded by relatively low
hydraulic conductivities and the shape of the conductive
flow path includes sections in reverse direction with respect
to the mean flow direction.
[45] The probability density functions of both transverse

components showed an increase of the kurtosis with increas-
ing sY

2 (see Figures 7b and 7c). In the isotropic case (e = 1),
the kurtosis of the transverse components were quite similar
to those of the longitudinal component. In the anisotropic

Figure 5. Effect of the variance of the logarithm of the
hydraulic conductivity, sY

2, on the estimated normalized
variances of the longitudinal component of the Darcy
velocity in vertical nodal surfaces parallel to the mean flow
direction as a function of the distance from the front
boundary. The abscissa represents the normalized position I =
x/lh. The K fields are isotropic, e = 1.

Figure 6. Estimated ensemble skewness, g, of the long-
itudinal component of the velocity vector, ql, as a function
of the variance of the logarithm of the hydraulic
conductivity, s2Y, for an isotropic (e = 1) and a strongly
anisotropic (e = 0.017) case. The error bars denote the
convergence of the skewness with regard to a 95%
confidence interval.
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case (e = 0.017) an increase of sY
2 from 0.5 to 3.0 caused

the ensemble kurtosis of qth to increase from 10 to 296 and
the kurtosis of qtv to increase from 0.6 to 21. It is important
to note that in Figure 7b the ensemble kurtosis of
the anisotropic case is based on only 9 realizations. The
excluded realization shows a factor 5 higher kurtosis than the
ensemble kurtosis of the other 9 realizations and therefore
would distort the general pattern of the ensemble kurtosis.
It is remarkable that this special realization cannot be
identified as an outlier concerning mass balance errors or
other statistical parameters.

[46] Figure 8 shows the mean of ql and the variances of ql,
qth and qtv as function ofsY

2 for both, an isotropic and a strongly
anisotropic case. Figures 8a and 8e show that m(ql) increases
stronger with increasing sY

2 in the anisotropic case than in the
isotropic case. It can be concluded that the estimation of m(ql)
by second-order approximation fitted quite well to the MC
results, for both, the isotropic and the anisotropic cases. The
median value of ql shows no visible response to variations in
sY
2 as well as in e (see Figures 8a and 8e).
[47] For the isotropic cases up to sY

2 = 0.5 (Figures 8b, 8c,
and 8d) it can be concluded that s2(ql), s

2(qth) and s2(qtv)
derived from the MC analysis agree better with first-order
than second-order approximation. This is astonishing be-
cause one would expect the second-order approximation to
fit better to the estimates from the MC analyses. However,
the second-order approximations in section 2.2 do not
consider second order head corrections, which is likely
the reason for the discrepancies between second-order
estimations and the results of the MC analyses at 0.5 <
sY
2 � 1.5. On the other hand with decreasing sY

2 first- and
second-order approximations converge. Therefore at sY

2 =
0.01 and e = 1 there are only little differences between
first-order (s2(qth) = s2(qtv) = 7.0 
 10�5 m2/d2) and
second-order (s2(qth) = s2(qtv) = 7.2 
 10�5 m2/d2)
estimation. Also aMC analyses at sY

2 = 0.01 and e = 1 showed
a similar result (s2(qth) = s

2(qtv) = 5.4
 10�5 m2/d2), slightly
below first- and second-order estimation. Note that the MC
analyses with e = 1 and sY

2 = 0.01 was not discussed in further
details but is based on the same procedures presented for those
MC analyses including e = 1.
[48] For the isotropic cases the second-order approxima-

tion of s2(ql) is in accordance with the MC analyses for 0.5 <
sY
2 � 1.5. A further increase of sY

2 results in higher values of
s2(ql) than predicted by second-order approximation. With
increasing sY

2, s2(qth) and s2(qtv) derived from the MC
analysis fit better with the second-order approximation than
with first-order approximation. It is interesting to note that the
non parametric estimates of the spreading of the velocity
distributions correspond well with the first-order approxima-
tion of s2(ql), s

2(qth) and s2(qtv).
[49] In the anisotropic cases an agreement between the

results of the MC analysis and the second-order approxi-
mation can be observed for s2(qtv) as a function sY

2

(Figure 8h). The non parametric estimates of s2(qtv) are
slightly below these results. For sY

2 < 1, s2(ql) obtained
from second-order approximation and from MC analyses
are in good agreement (Figure 8f). For sY

2 � 1 the second-
order approximations of s2(ql) underestimate the MC
results. In addition s2(ql), estimated from MC analyses,
increases more rapidly with sY

2 than the second-order
approximations. First-order approximations of s2(ql) under-
estimate both second-order approximations and MC results
of s2(ql), also for small sY

2. Non parametric estimates of
s2(ql) agree with the first-order approximation at sY

2 = 0.5.
For higher sY

2, non parametric estimates of s2(ql) are in
between first- and second-order approximations, converging
toward the second-order approximation. The largest discrep-
ancies between the approximate solutions of the stochastic
flow equation and the MC analyses are observed for s2(qth),
increasing more rapidly with increasing sY

2 in the MC
analyses (Figure 8g). Non parametric estimates of s2(qth)
are slightly higher than second-order approximations.

Figure 7. Estimated ensemble kurtosis, h, of the velocity
vector as a function of the variance of the logarithm of the
hydraulic conductivity, sY

2, for an isotropic (e = 1) and a
strongly anisotropic (e = 0.017) case: (a) longitudinal
component, (b) transverse horizontal component, and
(c) transverse vertical component. The error bars denote
the convergence of the kurtosis with regard to a 95%
confidence interval.
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[50] Figure 9 gives an insight into the variances of the
velocity components as a function of the anisotropy ratio, e,
for sY

2 = 0.5 and sY
2 = 3. For small sY

2, s2(ql) decreases slightly
with increasing e (Figure 9a). The s2(ql) obtained from MC
analyses is in good agreement with the second-order approx-
imation. The non parametric estimates of s2(ql) agree well
with the first-order approximation. For sY

2 = 3, s2(ql) from the

MC analyses show a stronger increase with decreasing e than
predicted by second-order approximation (Figure 9d). The
non parametric estimates of s2(ql) from MC analyses fall in
between first- and second-order approximation.
[51] For small sY

2, both stochastic approximations and the
MC analyses predict increasing values of s2(qth) with
increasing e. The second-order approximation is in better

Figure 8. Estimated univariate ensemble statistics of the components of the Darcy velocity vector,~q, as
a function of the variance of the logarithm of the hydraulic conductivity, sY

2: (a and e) mean Darcy
velocity, m(ql), (b and f) variance of the longitudinal component, s2(ql), (c and g) variance of the
transverse horizontal component, s2(qth), and (d and h) variance of the transverse vertical component,
s2(qtv), for an isotropic and a strongly anisotropic K field. In some cases the confidence interval of a
parameter is so small that the error bars are not visible.

10 of 15

W03418 ENGLERT ET AL.: PREDICTION OF VELOCITY W03418



agreement with the MC analyses than the first-order ap-
proximation (Figure 9b). This agreement is not found for
the cases sY

2 = 3 (Figure 9e). While the first- and second-
order approximate solutions of the stochastic flow equation
predicted an increasing value of s2(qth) with increasing e,
the MC analyses predict relatively constant and larger
values of s2(qth). It is remarkable that the s2(qth) derived
from MC analyses is of the same order of magnitude as the
second-order approximation of s2(qth) for high values of e,
which converges to 0.3 (not shown in Figure 9e). The non
parametric estimated s2(qth) also shows a relatively constant
value but at a lower level.
[52] Both first- and second-order approximations and the

MC analyses show increasing s2(qtv) values with increasing
e. At sY

2 = 0.5, s2(qtv) derived fromMC analyses fits better to
the second-order approximation at small e, and better to the
first-order approximation when e is closer to 1 (Figure 9c).
At sY

2 = 3.0, s2(qtv) derived from MC analyses fits well to
the second-order approximation (Figure 9f). The non para-

metric estimation of s2(qtv) fits better to second-order
approximation at small e and better to first-order approxi-
mation at e close to 1 at sY

2 = 0.5 and sY
2 = 3.0.

4.2. Spatial Correlation of Velocity

[53] The MC analyses shows that with increasing sY
2 the

spatial correlation decreases more rapidly with separation
distance (see Figure 10). This can be observed for longitu-
dinal as well as for the transverse components and is more
pronounced for the anisotropic than for the isotropic case.
For the correlation of the transverse velocity components
simultaneously the negative correlations, in absolute terms,
decrease with increasing sY

2. In contrast to this, the first-order
approximation of the spatial correlations of q are indepen-
dent of sY

2. However, in the isotropic case (Figures 10a,
10b, and 10c) the agreement between the MC analyses
and the first-order approximation is fairly good, at least
for sY

2 � 1. Also in the anisotropic case, the longitudinal
component r (ql) is in good agreement with the first-order

Figure 9. Estimated ensemble variances of the components of the Darcy velocity vector, ~q, as a
function of the anisotropy, e: (a and d) variance of the longitudinal component, s2(ql), (b and e) variance
of the transverse horizontal component, s2(qth), and (c and f) variance of the vertical transverse
component, s2(qtv), for two different variances of the logarithm of the hydraulic conductivity, sY

2. In
some cases the confidence interval of a parameter is so small that the error bars are not visible.
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approximation up to sY
2 = 3 (see Figure 10d). The correla-

tion of the vertical transverse component r (qtv) in the
anisotropic case shows good agreement between MC anal-
yses and first-order approximation at least for sY

2 � 3
(Figure 10f). The correlation of the horizontal transverse
component r (qth) derived from the MC analyses shows a
less good agreement with the first-order approximations.
Figure 10e shows that the negative correlations, in absolute
terms, are small in the function of r (qth) specially for higher
sY
2. Since the occurrence of the negative correlations in the

correlograms of the transverse velocity components is a
straightforward consequence of the continuity equation
[see, e.g., Rubin, 2003] and therefore should be present, the
following discussion is focused on that issue: In Figures 11a
and 11b the ensemble correlogram is presented together with
the ensemble indicator correlogram (cutoff = 0) for the cases
sY
2 = 0.5 and sY

2 = 3.0 at e = 0.017. In the case sY
2 = 0.5 both

correlogram and indicator correlogram fit relatively well to

the first-order approximation. In the case sY
2 = 3.0 only the

indicator correlogram shows a relatively good fit to the first-
order approximation. It can be seen that the deviation
between ensemble correlogram and ensemble indicator
correlogram are relatively small for sY

2 = 0.5, but obvious
for sY

2 = 3.0. Therefore the estimation of r (qth) seems to be
strongly depending on the nonnormality of the probability
density distribution of qth. In fact, the kurtosis of qth
increases at least by one order of magnitude with sY

2

increasing from 0.5 to 3.0 (see section 4.1). We suggest
that the extremely high and extremely low values of qth in
the tailing of the very peak shaped probability density
distribution with high kurtosis, destroy the spatial correla-
tion structure of the flow velocity fields. As a consequence
the correlations decrease more rapid with the separation
distance and the negative correlations, in absolute terms, are
decreasing simultaneously. Moreover, Figure 11c shows
clearly that the shape of the indicator correlograms are

Figure 10. Estimated correlations in the longitudinal direction for different variances of the logarithm of
the hydraulic conductivity, sY

2. Along the abscissa the normalized lag distance, I = x/lh, is applied. The
correlation is given for the three components of the velocity vector: (a and d) longitudinal component,
r(ql), (b and e) horizontal transverse component, r(qth), and (c and f) vertical transverse component,
r(qtv).
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extremely variable comparing single realizations. Therefore
it cannot be excluded that the correlograms are not statis-
tically converged. We suggest that this is the reason for a
nonperfect fit between the ensemble indicator correlogram

and the first-order theory. To prove that, MC analyses
including more realizations and larger domains are needed.

5. Summary and Conclusions

[54] High-resolution 3-D Monte Carlo analyses were
conducted to derive velocity statistics for a range of
variances of the logarithm of the hydraulic conductivity
0.5 � sY

2 � 3.0 and anisotropy ratios 0.017 � e � 1. The
statistical ensemble parameters of the generated hydraulic
conductivity fields are in good accordance with the preset
input parameters. The flow simulations showed small rela-
tive mass balance errors. The influence of boundary con-
ditions on the velocity statistics was investigated in order to
extract an inner core from the entire flow domain, in which
the statistics of the velocity are unaffected by the boundary
conditions. These statistics can then be compared with those
of an infinite flow domain and consequently with those
from approximated solutions of the stochastic flow equa-
tion. From the ensemble statistics, following conclusions
can be drawn:
[55] 1. The MC analyses show that with increasing sY

2

and increasing anisotropy the probability density function of
ql exhibits an increasing asymmetry with a tail to the right.
The kurtosis increases simultaneously. The probability den-
sity functions of both transverse components show an
increase of the kurtosis with increasing sY

2 and increasing
anisotropy.
[56] 2. The mean Darcy velocity, m(ql), increases with

increasing sY
2 and increasing anisotropy. This is fairly well

predicted by using second-order approximations. This holds
even for highly heterogeneous and strongly anisotropic
hydraulic conductivity fields.
[57] 3. The variance of the longitudinal component of the

Darcy velocity, s2(ql), increases with increasing sY
2 and

increasing anisotropy. For isotropic cases this is well
predicted by the first-order approximation for sY

2 � 0.5.
For 0.5 � sY

2 � 2.5, s2(ql) is better predicted by the second-
order approximation. For sY

2 � 2.5 both the first- and
second-order approximation underestimate s2(ql). For
strongly anisotropic cases, s2(ql) is predicted fairly well
for sY

2 � 1 by the second-order approximation. For higher
values of sY

2 both the first- and second-order approximation
underestimate s2(ql).
[58] 4. The variance of the transverse horizontal compo-

nent of the Darcy velocity, s2(qth), increases with increasing
sY
2, and increasing anisotropy ratio. The latter is restricted to

relatively small sY
2. For higher sY

2, s2(qth) is more or less
constant with e. In the isotropic case the first-order approx-
imations predict s2(qth) fairly well for sY

2 � 0.5. If sY
2

increases, s2(qth) derived from the MC analyses are larger
than the first-order approximations, but converge toward the
second-order approximation. At sY

2 = 3, the second-order
approximation fits the results from the MC analyses fairly
well. In strongly anisotropic cases the first- and second-
order approximations underestimate s2(qth), even for small
sY
2.
[59] 5. The variance of the transverse vertical component

of the Darcy velocity, s2(qtv), increases with increasing sY
2

and increasing anisotropy ratio. In the isotropic cases
the behavior of s2(qtv) is equivalent to the behavior
of s2(qth). In anisotropic cases where sY

2 = 0.5, s2(qtv) is
better described by a first-order approximation. For higher

Figure 11. Estimated correlograms and indicator correlo-
grams (cutoff = 0) of the transverse horizontal velocity
component in the longitudinal direction for different
variances of the logarithm of the hydraulic conductivity in
a strongly anisotropic case (e = 0.017). Along the abscissa
the normalized lag distance, I = x/lh, is applied. The
ensemble correlograms and indicator correlograms are
given for (a) sY

2 = 0.5 and (b) sY
2 = 3.0. (c) Indicator

correlograms at sY
2 = 3.0 for single realizations.
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sY
2, s2(qtv) is fairly well predicted by the second-order

approximation.
[60] 6. In isotropic cases the correlation of the longitudinal

component of the Darcy velocity in longitudinal direction,
r(ql), is predicted fairly well using the first-order approxima-
tion. The correlations of the transverse components of
the Darcy velocity in longitudinal direction, r(qth) and
r(qtv), are also fairly well predicted with the first-order
approximation. Solely the phenomenon that the correlations
decrease more rapidly with the separation distance and
simultaneously the negative correlations, in absolute terms,
are decreasing with increasing sY

2 is not predicted by the first-
order approximation.
[61] 7. In anisotropic cases up to sY

2 = 3.0, r(ql) is fairly
well predicted using the first-order approximation. The first-
order approximation of r(qth) and r(qtv) is independent from
sY
2, whereas the MC analyses show a steeper decrease of the

correlation with the separation distance and simultaneously
a decrease of the negative correlations, in absolute terms,
with increasing sY

2. This is more pronounced for r(qth) than
for r(qtv).
[62] 8. We assume the discrepancies between approxi-

mate solutions of the stochastic flow equation and the
results of the MC analyses strongly depending on the
nonnormality of the probability density distribution of
the velocity. The deviation from a normal probability
density distribution increases with increasing sY

2 and anisot-
ropy. This results in an increase of the kurtosis of the
velocity by at least one order of magnitude. We suggest
that the extremely high and low values of the velocity
within the tailing of the very peak-shaped probability
density distribution with high kurtosis, destroy the spatial
correlation structure of the flow velocity fields and at the
same time increase the variances of the velocity.
[63] Although the MC analyses concentrate on flow only

the results in this study permit speculations regarding the
prediction of transport parameters. Chin and Wang [1992]
showed that in heterogeneous isotropic 3-D hydraulic
conductivity fields the estimation of the longitudinal dis-
persivity were correct for at least sY

2 = 1.5 using first-
order theory. The transverse dispersivities are correct only
for sY

2 = 0.5. Higher sY
2 lead to an underestimation of the

transverse dispersivities. We suggest that the use of second-
order approximations of the transverse dispersivities should
lead to better estimations. In heterogeneous anisotropic 3-D
hydraulic conductivity fields the estimation of the longitu-
dinal macrodispersivity is valid up to sY

2 = 0.4 and second-
order approximations up to sY

2 = 0.6 [Naff et al., 1998b]. An
increase of sY

2 up to 0.9 shows increasing deviations
between MC results and second-order approximation
[Naff et al., 1998b, Figure 4]. On the basis of the
results of the present study we suggest a further increase
of sY

2 should lead to increasing underestimation of the
longitudinal macrodispersivity.
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