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[11 To study statistics of velocity fields in three-dimensional heterogeneous multi-
Gaussian saturated hydraulic conductivity fields and the accuracy of their prediction, we
performed high-resolution Monte Carlo (MC) analyses. The MC analyses included
variances of the log hydraulic conductivity in the range of 0.5 < 0% < 3.0 and anisotropy
ratios in the range of 0.017 < e < 1. The statistics of the velocity fields from the MC
analyses are compared with analytical solutions of the first- and second-order
approximations of the stochastic flow equation. This paper shows that the second-order
approximations fit significantly better to the univariate statistics of the Darcy velocity
from the MC analyses. For isotropic cases the second-order approximations correspond
fairly well to the univariate statistics of the velocity. For anisotropic cases the accordance

is given only for the mean velocity and the variance of the transverse vertical
component of the velocity. The MC analyses show that the spatial correlation of the
velocity decreases more rapidly with increasing o7. This was more pronounced for the
anisotropic than for the isotropic case. The negative correlations, in absolute terms, of the
transverse velocity components simultaneously decrease with increasing o3. This is in
contrast to the first-order approximation of the spatial correlations of the velocity. It is
assumed that the discrepancies between approximate solutions of the stochastic flow
equation and the results of the MC analyses are strongly dependent on the nonnormality of

the probability density distributions of the velocity.

Citation: Englert, A., J. Vanderborght, and H. Vereecken (2006), Prediction of velocity statistics in three-dimensional multi-
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1. Introduction

[2] It is well established that the transport of substances
in groundwater is strongly determined by the spatial het-
erogeneity of the groundwater flow velocity, which is
highly dependent on the heterogeneity of the hydraulic
conductivity [e.g., Mackay et al., 1986; Leblanc et al.,
1991; Boggs et al., 1992; Vereecken et al., 2000]. Therefore
it is indispensable to incorporate effects of spatial hetero-
geneity in predictions of flow and transport in groundwater.

[3] Since it is impossible to determine the structure of
an aquifer in a deterministic sense, based on point-scale
information derived from borehole measurements, the
heterogeneity of an aquifer is characterized in a geostatistical
sense. As a consequence, research is aimed at linking geo-
statistical parameters of the hydraulic conductivity field with
those of the Darcy velocity and head fields. In this field of
research several techniques, each with its specific advantages,
are described in the literature. In this study we focus on the
evaluation of approximate solutions of the stochastic differ-
ential flow equation using Monte Carlo analyses, both based
on multi-Gaussian log hydraulic conductivity fields.

[4] Over the last thirty years, stochastic flow equations
were developed that quantify the effect of spatial heteroge-
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neity of the hydraulic conductivity, K, on the Darcy veloc-
ity, ¢, and total head, H. Perturbation approaches were
applied to Darcy’s law and the continuity equation in order
to find closed form functions deriving the geostatistical
parameters of ¢ from those of the K [e.g., Dagan, 1989;
Gelhar, 1993; Zhang, 2002; Rubin, 2003]. These functions
are approximate solutions which were obtained after a
truncation of the perturbated Darcy’s law and continuity
equation. Extensive work has been carried out on first-order
approximations [e.g., Gelhar and Axness, 1983; Dagan,
1984; Rubin and Dagan, 1992; Neuman and Orr, 1993;
Russo, 1995; Hsu et al., 1996; Bonilla and Cushman, 2000],
less attention has been paid to second-order approximations
of the perturbated equations in two (2-D) [Hsu et al., 1996],
and three dimensions (3-D) [Deng and Cushman, 1995; Hsu
and Neuman, 1997; Deng and Cushman, 1998]. The
theoretical validity of the approximate solutions of the
stochastic flow equation was established for small values
of the variance of the logarithm of the hydraulic conduc-
tivity, 03. The validity of these approximate solutions for
large values of o} is in many cases unclear.

[s] In order to test the validity of the approximate
solutions for higher 0%, Monte Carlo (MC) analyses are
an appropriate tool. In MC analysis several realizations of
the random space function, which characterizes the spatial
variability of the hydraulic conductivity field, are generated.
Subsequently the flow equation in these realizations is
solved numerically. Statistical analysis of ¢, including all
of these realizations, allows for detailed study of the
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Table 1. Three-Dimensional Monte Carlo Analyses on Velocities From Literature

Preset K Statistics

Rating of the MC Analyses

Source Range of o7 Range of e Number of Elements Number of Realizations

Ababou et al. [1989] 1.0-5.29 1 13 x 10* 1

Tompson and Gelhar [1990] 1.0-5.29 1 12 x 10* 1

Chin and Wang [1992] 0.1-1.5 1 12 x 10* 92

Dykaar and Kitanidis [1992] 1-6.0 1 17 x 10° 1

Neuman et al. [1992] 0.25-7.0 1 42.9 x 10° 500

Burr et al. [1994] 0.04 0.18 11 % 10* 25

Naff et al. [1998a] 0.09-0.9 0.05-0.26 90 x 10* 900

Present study 0.5-3.0 0.017-1.0 12 x 10° 10

univariate and spatial statistics of the components of the
velocity vector in terms of ensemble parameters. In the
following, the mean flow direction is denoted as longitudi-
nal direction, / direction. Perpendicular to the mean flow
direction are the transverse horizontal, th direction, and
the transverse vertical direction, #v direction. Furthermore

Ao . . L . .
e = — is the anisotropy ratio with X\, being the correlation

lengt}{l in tv direction and N, being the correlation length in
[ and th directions, which are defined to be equal.

[6] For 2-D isotropic hydraulic conductivity fields it was
shown that the first-order approximation of the effective
hydraulic conductivity is correct [e.g., Matheron, 1967;
Jankovi¢ et al., 2003b]. Using a MC approach, it was also
shown for 2-D isotropic hydraulic conductivity fields [e.g.,
Bellin et al., 1992; Salandin and Fiorotto, 1998; Hassan et
al., 1998] that the estimation of the flow velocity variance is
accurate up to o3 = 1 using first order approximation and up
to 0% = 2 using second-order approximation. Moreover the
first order approximation of the correlation of the flow
velocity is independent of o3 and exact for o3 < 1. In
addition it was found that for higher o} the correlation
lengths of the flow velocity decrease with increasing o7-

[7] The results of the 2-D simulations and approximations
of flow in a heterogeneous conductivity field can be extrap-
olated to real 3-D flow and conductivity fields but only in a
qualitative sense [e.g., Russo, 1998]. Because of the increase
of the numerical demands with the increase of the dimen-
sionality of the flow problem, only a few studies report on the
validity of approximate solutions of the stochastic differential
flow equation in 3-D cases (see Table 1).

[8] For 3-D isotropic hydraulic conductivity fields it was
shown that first-order estimates of the mean Darcy velocity
are valid up to o3 < 1 and valid up to at least o3 = 7 for
second-order estimates [Ababou et al., 1989; Tompson and
Gelhar, 1990; Chin and Wang, 1992; Dykaar and Kitanidis,
1992; Neuman et al., 1992]. The first-order estimates of the
covariances of the Darcy velocity components are valid for
0% < 0.5. The validity of second-order approximations
estimating the covariance of the velocity is still an unre-
solved issue.

[9] For 3-D anisotropic hydraulic conductivity fields it was
shown that the first-order approximation of the mean velocity
is only valid for 0% <0.5ate>0.07 [Burretal., 1994; Naff et
al., 1998a]. Estimates of the mean Velocit¥ by second-order
approximation are accurate at least up to 0y = 0.9 at e = 0.05.
The validity for o3 > 0.9 is an unsettled topic. It was also
shown that for 67 < 0.18 and e = 0.04, first-order estimates of
the covariance of the longitudinal velocity component in
[ direction fit fairly well to results from MC analyses. The

validity of first- and second-order estimates of the covarian-
ces of the transverse velocity components and of the longi-
tudinal component at o3 > 0.18 for anisotropic media is still
anunresolved topic. This is of particularly interest, since first-
and second-order approximations deviate stronger for larger
anisotropy and larger o7 [Deng and Cushman, 1995; Hsu and
Neuman, 1997; Deng and Cushman, 1998].

[10] The objective of this paper is to systematically eval-
uate the effect of e and 03 in 3-D hydraulic conductivity fields
on the flow field statistics and compare them with first- and
second-order approximations. Results of MC analyses will be
presented for 0.5 < 02<3.0and 0.017 < e < 1. Thereto the
following assumptions were made: the log transformed
hydraulic conductivity field is a second order stationary
random space function, i.e. there is no trend in Y and the
covariance between Y values at two different locations
depends only on the separation distance between the loca-
tions. The axes of the spatial correlation are aligned with the
horizontal and vertical directions and the spatial covariance is
isotropic in the horizontal direction. Using an exponential
covariance model to express the covariance Cyy in terms of
the separation distance (£), the spatial covariance is given as

Cyr(€) = o} - exp —\/(i—;)z+(§—i)2+(§—i)z) (1)

where X, is the correlation length in longitudinal and in
transverse horizontal direction and A\, is the correlation
length in transverse vertical direction. The mean hydraulic
gradient and thus the mean flow vector are aligned in the
horizontal direction with the principal axis of the spatial
covariance function. There are no local sinks and sources so
that the flow field is divergence free.

[11] The paper is organized in the following manner: In
Section 2 we present the first- and second-order approxi-
mate solutions of the stochastic flow equation taken from
literature. Subsequently, in section 3, we focus on the MC
analyses including technical issues. Finally, in section 4, the
statistics of the velocity from both MC analyses and the
approximate solutions of the stochastic flow equation are
compared and analyzed.

2. Approximate Solutions of Stochastic Flow
Equation

[12] Below, approximations of the ensemble statistical
parameters of the Darcy velocity based on first-order
(superscript 1) and second-order (superscript 2) approxima-
tions of the perturbated continuity and Darcy equations in
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conductivity fields of infinite extent are given. The following
first- and second-order approx1mat10ns of the mean (j;), the
variances (crq) and the spatial covariances (C,(§)) of the
Darcy velocity correspond to an exponentlal covariance
model of the logarithm of the hydraulic conductivity (Y).

2.1.

[13] The mean Darcy velocity, !
[1989] by

First-Order Approximate Solutions
)uq,, is given by Dagan

)
uql =1 +& (2)

fore =1, and

) 2
Iy, (1 1 e 1 /1
=l+oy| z—z—=|—F——=garctany/ 5 —-1-1
K,J Y(z 21 —e\eVl—e? e
©)

for e < 1, where K, is the geometric mean of the hydraulic
conductivity and J is the mean hydraulic gradient.

[14] The variance of the longitudinal, )051, the transverse
horizontal, " cq,h, and the transverse vertical component,
@ ;,V, of the velocity vector are given by Dagan [1989] for
isotropic and by Russo [1995] for anisotropic cases by

(g2

q1 8
— = 4
Gg(KgJ)z 15 @

g2 (g2

a__ — w1 (5)
2 2
oy (Kg] ) o} (KgJ ) 15
fore =1, and
(‘)021 . 1963 — 10&° - e(13 — 4¢?) arcsin[(l — ez)f]
o3 (KyJ)* 16e(~1+e)?  16(1—e2)(—1 +¢2)
(6)
(g2 ) )
@ _ .e . (e(l —ez)é+293(1 _62)§
0} (KeJ)”  16(1 —e2)2(—1 +€?)
1 1
+ arcsin [(1 - ez)z} — 4¢ arcsin[(l - ez)zD (7)
. 1
o2 32 e(1+26%) arcsm[(l - ez)z]
= - 1 ®)
o} (KgJ)2 4(—1+e) 4—14&)(-1+e)
fore < 1.

[15] The covarlance of the longitudinal, “)Cq,(g,) the
transverse horizontal, ¢ q,h(ﬁl) and the transverse vertical
component, V'C (&), of the velocity vector in longitudinal
direction are given by Russo [1995] by

e (€) _ /+1 (1_ e
1730 A S O T YR

-[4 — 52+ (.’)r2 — r4)62]

(1= |r]) exp(— &)l dr 9)
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ve,, &) /“ re(1—r*)(1 = |rgy])
o} (K)o a[(1—r2) + e

. exp(f|r§;|)dr (10)
e, (&) /“ Pe(l =) (1 = |rg])
o} (Ket)” S a[(1 = 12) + r2e2p

-exp(—|rg)|)dr (11)
for e < 1 where ¢/, = & is the normalized separation

distance in longitudinal direh:ction.
2.2. Second-Order Approximate Solutions

[16] The mean Darcy velocity, (z)uq,, is given by Deng

and Cushman [1995] by

P, 1 2 11 2
Kg.] = <1 + (§+B>0y +§(E+B) Oy (12)

1 t
_are ana)wtha— V|1 —é*|/e? fore<1

272
1
andB=—§fore:1

[17] The Varlance of the longitudinal, @g2 oy the transverse
horizontal, ®o2,,, and the transverse vertical component,
2) .2 qih, .
ogn» of the velocity vector are given by Deng and Cushman

[1995] by

where 3 =

(2)02 8 ( 7
— = 1+—02) (13)
2 Y
o} (KJ) 15 16
fore =1, and

@) g2

0 (1)02[ + (__'_i( B arctana)
o2 (KJ)! ok (KeJ) 2 @ ela

+i (1 3 arctana)2+6 (a2 +3
4a* éla 1642 a?
+ az—_3 arctan a) )
eta’

for e < 1, and

(14)

2) 52
0-’11};

:(1) qth( +ZO-Y)

@2 =) 02“1(1 + 20?,)

qw

for e < 1, with a = /|1 — €| /2.

[18] The above presented analytical expressions of Deng
and Cushman [1995] are second order in 0%, however,
without second-order head corrections. Deng and Cushman
[1998] revisits the findings of Deng and Cushman [1995],
considering second-order head corrections numerically.
They found out that the second-order head corrections
mainly influence the transverse components of the velocity.
In detail, from Deng and Cushman’s Figure 2 it can be
deduced that the estimation of the variance of the transverse
horizontal velocity component is not affected by second-

(16)
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Table 2. Dimensions of the Modeling Domains, Grids, and Spatial
Correlation Lengths of the Hydraulic Conductivity®

Size of the
N Discretization Domain
>\V
e= Yh Hor, m Ver,m Hor,m Ver,m Hor,m Ver,m
0.017 11.8 0.2 1 0.05 200 15
0.04 5 0.2 1 0.05 200 15
0.1 10 1 1 0.05 200 15
0.2 5 1 1 0.05 200 15
1 1 1 0.25 0.25 50 50

“The correlation lengths X\, \,, and X, correspond to an exponential
correlation function; Hor. indicates horizontal, and Ver. indicates vertical.

order head corrections in an anisotropic case e = 0.1, but in
the isotropic case e = 1. Furthermore Deng and Cushman’s
Figure 3 shows that the estimation of the variance of the
transverse vertical velocity component is only slightly
affected in the anisotropic case e = 0.1, but clearly in the
isotropic case e = 1. Using second order in o7 including
second-order head corrections in the isotropic case as
presented by Deng and Cushman [1998], the variance of
both the transverse horizontal and transverse vertical veloc-
ity component are in between the here presented estimation
based on equation (16) (second order without second-order
head corrections) and the here presented estimation based
on equation (7) (first order).

3. Monte Carlo Analyses

[19] In the following, the MC procedures including the
generation of the hydraulic conductivity fields, numerical
modeling of the velocity fields and the computation of
ensemble parameters are described. Furthermore the reli-
ability of the numerical results are discussed.

3.1.

[20] The computational domain used for the MC analyses
included 201 nodes in longitudinal, /, 201 nodes in trans-
verse horizontal, th, and 301 nodes in transverse vertical
direction, #v. The isotropic case departed from this scheme
including only 201 nodes in the transverse vertical direction
(Table 2). Realizations of the random space function,
characterizing the spatial variability of the hydraulic con-
ductivity, were generated with the Kraichnan generator
using 65536 modes [Kraichnan, 1970]. The geometric
mean of the hydraulic conductivity was 1.88 x 107> m/s
for all conductivity fields. Five anisotropies (including one
isotropic) and six different o3 (ranging from 0.5 to 3.0 in
0.5 steps) were constructed. For each of these 30 cases,
10 fields were generated. The geostatistical input param-
eters for the Kraichnan generator are given in Table 2.

[21] The 3-D stationary flow equation, V(K3Vhz) = 0
with Kz being the hydraulic conductivity and 4z being
the head at position X, was solved numerically, using the
TRACE model [Vereecken et al., 1994]. TRACE uses the
standard Galerkin finite element method (FE) with hex-
agonal isoparametric elements. To solve the FE linear
equations set, a conjugate gradient solver (CG) is used.
The TRACE code is parallelized, and can be run on
massive parallel computers [Seidemann, 1996; Englert et al.,
2004]. The computations were carried out on 32 processors of
the “Juelich Multi Processor” (JUMP) supercomputer (IBM

Layout and Computational Procedures
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Regatta p690+ with 1312 Power4+ processors) at the Jiilich
research Center.

[22] No-flux Cauchy boundaries at the bottom, the top,
the right and the left hand side of the domain were imposed.
A constant head or Dirichlet condition was imposed at the
front and the back of the domain resulting in a mean
hydraulic gradient of 2.02 x 10 for all anisotropic cases
and of 2.00 x 1072 for the isotropic cases.

[23] The generation of the heterogeneous hydraulic con-
ductivity field with the Kraichnan generator required be-
tween 2600 s and 2800 s. To solve the 3-D flow equation
1400 s to 2000 s of computation time was needed. About
8000 to 13000 CG iterations were needed to reach the
convergence criterion of 1 x 10™® m. The number of CG
iterations and the computation time increased with increas-
ing o%.

3.2. Statistical Parameters

[24] Statistical parameters of a variable z at the position x;
were computed using the following formulas:

Z?:l z(x;)

===, (17)
o2 = Limi (Z(ii)l_ h)’ (18)
_ n S (2(x) — )’
YT = 1) —2) o3 (19)
R (3 VI Y C BT S,
o n=1)n-=2)(n-3) ot
~ 3m—1)

=23 (20)

€0 = L 37 (el 20 +8) e (et +8) @1)
i=1

p-(€) = C(6) (22)

o(z(x;)) - o(z(x; +€))

where 7 is the number of observations, m is the number of
paired observations, u is the arithmetic mean, o is the
variance, vy is the skewness, 7 is the kurtosis, C(€) the
spatial covariance and p(f) the spatial correlation of
the variable z for the separation vector €.

[25] Nonparametric estimates of a representative value
and of the spreading of the distribution were estimated from
the median and the squared absolute value of half the
difference between the 15.87 percentile and the 84.13
percentile. For a normal distribution, these quantile based
estimates correspond with p and o For nonparametrical
estimation of spatial correlations an indicator approach was
used, based on the following transform:

1if z(x) < cut
ind(x;) = (23)

0 otherwise
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where ind; is the transformed value of z(x;) for a given cutoff
value cut.

[26] In the scope of the MC analysis statistical parameters
were derived for single realizations and for all realizations
of a certain case, where the parameters are based on the
values of, in our case, ten realizations. The latter one are
called ensemble parameters. To quantify the statistical
convergence of a particular ensemble parameter at a 95%
confidence interval the “jackknife method” [Wonnacott and
Wonnacott, 1985] was used. Statistical computations were
carried out using GSLIB [Deutsch and Journel, 1998] and
SAS 8.2 (SAS Institute Inc., North Carolina) software.

3.3. Generated Hydraulic Conductivity Fields

[27] To illustrate the reliability of the stochastically gen-
erated heterogeneous K fields, the case with the input
parameters ¥ = —6.277 In(m/s), 07 =3,%\,=11.8 m and
A, = 0.2 m was analyzed in detail.

[28] The ensemble mean of the generated Y fields was Y=
—6.283 In(m/s), which corresponds to a deviation from
the preset mean of 0.10%. Within the ten realizations the
maximum mean was Y= —6.295 In(m/s), the minimum mean
was ¥ = —6.360 In(m/s), which corresponds to a maximum
deviation from the preset mean of 1.32%. The ensemble o7
was 3.009, which corresponds to a deviation from the preset
o7 of 0.30%. The maximum o7 was 3.008, the minimum o7
was 2.943 which corresponds to a maximum deviation from
the preset variance of 0.26%.

[29] It could be observed that there was a very good ac-
cordance between the generated Y field and the a priori pre-
scribed covariances for the horizontal directions (Figures 1a
and 1b). In the vertical direction (Figure 1¢), a very good fit
between the ensemble covariance of the generated Y fields
and the a priori prescribed covariances was found up to a lag
distance of about ten meters. At higher lag distances the
ensemble correlations began to oscillate but with a very small
amplitude.

[30] The presented case was the most critical one amongst
all the 30 cases of this study. The other 29 cases showed
even smaller deviations from the prescribed parameters.

3.4. Convergence and Accuracy of Flow Simulation

[31] To control the numerical convergence of the flow
simulations we analyzed the convergence behavior of the
velocity statistics of three selected single realizations: e =
0.017 ato?=1,e=0.017 at o3 =3 and e = | at o3 = 3. For
these realizations we successively decreased the conver-
gence criteria within the CG until the statistical parameters
of the velocity converged. This occurred at a CG conver-
gence criteria of 1 x 107° m. Flow simulations using a
more stringent convergence criteria for the CG of 1 x 10~"* m
led to identical velocity statistics within at least three signif-
icant digits.

[32] To measure the accuracy of the flow simulations the
relative mass balance error was considered first for the entire
domain and second for every element in the domain. The
mass balance, defined as (inflow — outflow)/(total volume),
was calculated for all cases and all realizations. The relative
mass balance error for the entire domain increased with
increasing 0%, but was not influenced by the anisotropy ratio
e. The mean relative mass balance error for the entire domain
was 9 x 107°% at 03 = 0.5 and was 5 x 107%% at o3 = 3.
Within the 300 realizations the maximum of the relative mass

ENGLERT ET AL.: PREDICTION OF VELOCITY

W03418
3
a) Mo‘nte Carlo Simul‘ation X
25 Preset Covariance Model |
2 Longitudinal Direction B
(&}
_0.5 Il Il Il
0 50 100 150 200
lag [m]
b) 3 :
2.5 B
2 Transverse Horizontal Direction B
(6}
-0.5 L L L
0 50 100 150 200
lag [m]
c) s ‘
25 R
2 Transverse Vertical Direction B
1.5 B
(6]
lag [m]
Figure 1. Preset covariance function of Y and ensemble

covariances from generated Y fields using the Kraichnan
generator shown for the three directions of the modeling
domain in the case e = 0.017 and o* = 3.0.

balance error for the entire domain was 4 x 10~ %% and 3 x
107% for o3 = 0.5 and o = 3 respectively.

[33] On the basis of velocity data at the nodes of lateral
surfaces of an element, the mean velocities normal to the
surfaces of single elements were calculated. We then
standardized the mean velocities by the corresponding
area of an element surface and we calculated the resulting
velocities into or out of an element. Subsequently the
local mass balances were calculated for every single element
by multiplying the afore mentioned velocities times the time
step (0.1 d) used in the global mass balance computation.
Evaluating only the inner core of the domain (see section 3.5)
the mean relative mass balance error for single elements was
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Figure 2. Ensemble mean gradient and ensemble pressure
head fluctuations in nodal surfaces as a function of the
position in the domain, based on a heterogeneous K field
with e = 0.017 and o, = 1: (a) in the longitudinal direction,
(b) in the transverse horizontal direction, and (c) in the
transverse vertical direction. The abscissae represent the
normalized position I; in Figures 2a and 2b, I = x/\;, and in
Figure 2¢, I = x/\,.

1.9 x 10 "% at 0y = 0.5 and was 7.7 x 10~ *% at 03=3. The
maximum relative mass balance error was 5.4 x 107% and
1.8 x 107'% for 6% = 0.5 and o} = 3 respectively. These
values were assumed to be small enough to avoid a signif-
icant impact on the velocity statistics.

3.5. Mean Gradient, Head Fluctuations, and
Boundary Effects

[34] It is well known that boundary conditions, no flow
boundaries as well as constant head boundaries, have a
detectable impact on the statistics of the pressure head as
well as of the Darcy velocity in the vicinity of the bound-
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aries. In this context Rubin and Dagan [1988] and Rubin
and Dagan [1989] showed the influence of boundary
conditions on head variabilities in a flow domain using a
first order in o} analytical solution of the stochastic flow
equation for 2-D isotropic cases. Bellin et al. [1992], Oliver
and Christakos [1996], Salandin and Fiorotto [1998], and
Hassan et al. [1998], for example, observed boundary
effects on head and flux variabilities using MC analyses
for 2-D cases.

[35] Naff et al. [1998a] shows boundary effects in the
numerically simulated velocity fields in detail for 3-D
anisotropic hydraulic conductivity fields. They demonstrated
that the statistics of the longitudinal component of the
velocity are not visibly influenced by boundary conditions
nor in longitudinal neither in transverse transects. The
variances of both transverse components of the velocity
are affected in longitudinal direction, converging toward
zero at the constant head boundaries. The variance of the
transverse horizontal component is affected in transverse
horizontal direction, converging toward zero at the no flux
boundaries. It is not affected in transverse vertical direction.
The variance of the transverse vertical component is affected
in transverse vertical direction, converging toward zero at
the no flux boundaries. It is not affected in transverse
horizontal direction.

[36] In our study the influence of the boundary conditions
on head, mean gradient and velocity statistics were analyzed
as follows: In a first step the statistics of the head and of the
velocity components were calculated in each realization for
every nodal surface parallel to a lateral boundary. In a
second step ensemble mean and variance in a surface at a
certain distance from the boundary were calculated from the
velocity statistics of the single realizations. The ensemble
gradients and head fluctuations are directly calculated based
on the values of all realizations within a certain case. The
computed ensemble parameters of each slice were based on
at least 100000 single values. In the following the focus is
first on boundary effects on head fluctuations and mean
gradients and second on velocity statistics.

[37] The ensemble mean gradient of the entire domain
was computed by subtracting the ensemble mean pressure
head at the front plane from the ensemble mean pressure
head at the back plane of the domain and dividing the
difference by the length of the entire domain. Therefore
the mean gradient of the entire domain is predefined by the
models’ extend and constant head boundary conditions at
the front and the back of the domain. These data were used
to set up an equation describing the mean pressure head as a
linear function of the position along the mean flow direction
(g; direction). Consequently the head fluctuations for every
plane parallel to the front and back planes of the domain are
the mean squared residuals of the individual head values
within a plane related to the corresponding pressure head
value defined by the linear function. For the case e = 0.017
and 07 = 1 ensemble mean gradients for the entire domain
and the corresponding head fluctuations are shown in
Figure 2a. It shows, as expected, that the head fluctuations
are strongly influenced by the constant head boundaries
converging to zero at these boundaries.

[38] Evaluating only the inner core of the domain (see last
paragraph of this section) mean gradient and head fluctua-
tions were computed slicewise and parallel to the mean flow
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Figure 3. Ensemble variances of the Darcy velocity
vector components in nodal surfaces as a function of the
position in the domain, based on a heterogeneous K field
with e = 0.017 and 04> = 1: (a) in the longitudinal direction,
(b) in the transverse horizontal direction, and (c) in the
transverse vertical direction. The abscissae represent the
normalized position [; in Figures 3a and 3b, /= x/\;, and in
Figure 3c, I = x/\,.

direction. Mean pressure heads were computed at the front
line and the back line of each slice. For each slice these
mean pressure head values and the distance between front
and back of the inner core were subsequently used to set up
an equation describing the mean pressure head as a linear
function of the position along the ¢, direction. Consequently
the mean gradients are equal to the slopes of these equations
and the head fluctuations are represent by the mean squared
residuals of the individual head values related to the
corresponding value defined by the linear equations.
Figures 2b and 2c display the resulting ensemble gradients
and ensemble head fluctuations as a function of the
position in th direction and #v direction, respectively.
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Figures 2b and 2c show that the ensemble gradient and
the ensemble head fluctuations are still varying with the
position in th direction as well as in fv direction. This is
more pronounced in # direction than in #v direction, which
is due to the much smaller number of integral scales of Y'in
the horizontal direction. The ensemble mean gradient for the
inner core (not shown) shows only 0.1% deviation from the
ensemble mean gradient of the entire domain.

[39] The previous shown analyses of ensemble gradients
and ensemble head fluctuations was performed for e = 1 and
e = 0.017, including 0% = 1.0 and o7 = 3.0. An integrated
analysis of the results shows that with increasing oy and
decreasing e, the head fluctuations increase from 1,78 x
10°°m*ate=1landoy=1to 1.11 x 107" m” at e = 0.017
and o} = 3. Differences between the preset mean gradient
and the ensemble mean gradient of the inner core are higher
for the isotropic than for the strongly anisotropic case with a
maximum deviation of 2.25% at e = 1 and o7 = 3.

[40] In Figure 3 the variances of the velocity components
in nodal surfaces are presented for the different directions as
a function of the normalized position relative to the point of
origin of the velocity field for the case 03 =1 and e = 0.017.
Figure 3a shows that in the longitudinal direction with
constant head boundaries the variances of the transverse
components are affected up to 2 \;, and converge toward 0
at the edges. The variance of the longitudinal component is
not visibly affected. From Figures 3b and 3c, it can be
observed that in the transverse directions with impervious
boundaries the variance of the longitudinal component of
the velocity is unaffected. Contrary the horizontal transverse
component is affected in horizontal transverse direction, 4
direction, up to 2 X\, and the vertical transverse component
is affected in vertical transverse direction, v direction, up to
10 \,. Both converge toward 0 at the edges.

[41] The previous analysis was performed for each case in
the MC analyses, and the impact of variations in 3 and e on
boundary effects was studied. In general, there were only
negligible boundary effects on o°(¢;) in # and tv direction,
on 6%(¢y) in th direction, and on o°(¢,;,) in #v direction. The
most pronounced impact of boundary conditions was on

0.03 5T \
oy=3.0
O,y=25
0.025 - ooy=20  x -
ol
o v=1. [ ]
0.02 02‘(:0-5 o

0.015

P (@)

0.01

0.005

1]

Figure 4. Effect of the variance of the logarithm of the
hydraulic conductivity, oy%, on the estimated normalized
variances of the vertical transverse component of the Darcy
velocity in horizontal nodal surfaces parallel to the mean flow
direction as a function of the distance from the bottom
boundary. The abscissa represents the normalized position /=
x/\,. The anisotropy of the K fields is e = 0.017.
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Figure 5. Effect of the variance of the logarithm of the
hydraulic conductivity, o,°, on the estimated normalized
variances of the longitudinal component of the Darcy
velocity in vertical nodal surfaces parallel to the mean flow
direction as a function of the distance from the front
boundary. The abscissa represents the normalized position /=
x/N\y,. The K fields are isotropic, e = 1.

6%(¢s) in tv direction (Figure 4). The range of influence of
the no-flux boundaries increases with increasing o3 and
with increasing anisotropy (decreasing ¢). The influence in
range increases from 2 X\, ate=1 and 02=0.5t0 15\, ate =
0.017 and o7 = 3.0. The effect of no-flux boundaries on
oz(q,h) in th direction increases with increasing o7 and
decreases with increasing anisotropy. The influence range
is0.5\,ate=0.017 and 63=0.5and 4 \, ate= 1 and 65 = 3.
The constant head boundaries, edges in / direction, influence
the variances of all components of the Darcy velocity vector.
Both o°(¢,,) and 5*(g,,) are converging to 0 within 2 X, in
[ direction. This behavior is not affected by variations in o7
and e. Contrary at higher o3 (not visible at the relative small
o7 of Figure 3a) 0°%(q;) increases toward the edge (Figure 5).
This effect increases with increasing 0% and decreases with
increasing anisotropy. For e = 0.017 and o3 = 0.5 the
influence of the constant head boundary on o%(g;) is negligi-
ble, whereas the range of influence increases to 4 N, fore =1
and 07 =3 (Figure 5).

[42] To exclude the boundary effects, only velocities
within an inner core of the entire flow domains were
considered. This inner core was 100 m in / direction, 100 m
in th direction and 5 m in #v direction for all the anisotropic
cases and it was 37.5 m in all directions for the isotropic
cases. For all the cases with e=0.017, e=0.04 and e =1 this
ensures negligible boundary effects on the inner core. For
the cases with e = 0.1 and e = 0.2 the exclusion of boundary
effects is ensured up to o3 = 1.0 for all components of the
velocity. For higher o7 the #v component is somewhat under-
estimated. Contrary the influence of boundaries on the / and
th components of the velocity are again negligible within the
inner core.

4. Results

[43] After excluding the boundary effects, the Monte
Carlo analyses allow for a detailed statistical characteriza-
tion of the velocity as a function of the variance and the
correlation lengths in horizontal and vertical direction of
the logarithm of the hydraulic conductivity, Y. Within the
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reliability discussed in Section Monte Carlo Analyses, this
permits a comparison with first- and second-order approx-
imate solutions of the stochastic flow equation. In the
following the results are discussed, first with a focus on
univariate velocity statistics and second on spatial velocity
statistics.

4.1.

[44] The MC analyses showed that with increasing o3 and
increasing anisotropy the probability density function of ¢;
exhibited an increasing asymmetry with a tail to the right.
This was expressed by an increase in skewness from 1.3 ate =
1 and 0= 0.5 toward a value of 9.9 ate=0.017 and 07= 3.0
(see Figure 6). Simultaneously the kurtosis increased from
3.1 toward a value of 188 (see Figure 7a). Excluding
occasionally negative g, values, the accordant values for the
skewness and kurtosis of log-transformed values of ¢, ranged
between —0.2 and —0.03. This suggests that the ¢, distribu-
tion is better described by a log normal than a normal
distribution. However, this could not be confirmed with the
Kolmogorov Smirnov test for normality. In this context it is
important to consider that with increasing o3 and decreasing
anisotropy the probability of negative values for the longitu-
dinal velocity component increases. For 03 < 1.5 the prob-
ability for negative ¢, values was undetectable small. For 03=
3, the probability increased to 0.00002% at e = 0.017 and to
0.008% in the isotropic case. Negative g; values are well
known from other 2-D and 3-D MC analyses on flow in
heterogeneous media including o3 > 1.5 [e.g., Tompson and
Gelhar, 1990; Salandin and Fiorotto, 1998; Jankovic et al.,
2003a]. They can occur in cases where a relatively high
conductive flow path is surrounded by relatively low
hydraulic conductivities and the shape of the conductive
flow path includes sections in reverse direction with respect
to the mean flow direction.

[45] The probability density functions of both transverse
components showed an increase of the kurtosis with increas-
ing 0% (see Figures 7b and 7c¢). In the isotropic case (e = 1),
the kurtosis of the transverse components were quite similar
to those of the longitudinal component. In the anisotropic

Univariate Velocity Statistics

12 T T
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Figure 6. Estimated ensemble skewness, v, of the long-
itudinal component of the velocity vector, ¢, as a function
of the variance of the logarithm of the hydraulic
conductivity, 03, for an isotropic (¢ = 1) and a strongly
anisotropic (e = 0.017) case. The error bars denote the
convergence of the skewness with regard to a 95%
confidence interval.
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Figure 7. Estimated ensemble kurtosis, m, of the velocity

vector as a function of the variance of the logarithm of the
hydraulic conductivity, oy, for an isotropic (e = 1) and a
strongly anisotropic (¢ = 0.017) case: (a) longitudinal
component, (b) transverse horizontal component, and
(c) transverse vertical component. The error bars denote
the convergence of the kurtosis with regard to a 95%
confidence interval.

case (e = 0.017) an increase of o7 from 0.5 to 3.0 caused
the ensemble kurtosis of ¢, to increase from 10 to 296 and
the kurtosis of ¢,, to increase from 0.6 to 21. It is important
to note that in Figure 7b the ensemble kurtosis of
the anisotropic case is based on only 9 realizations. The
excluded realization shows a factor 5 higher kurtosis than the
ensemble kurtosis of the other 9 realizations and therefore
would distort the general pattern of the ensemble kurtosis.
It is remarkable that this special realization cannot be
identified as an outlier concerning mass balance errors or
other statistical parameters.
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[46] Figure 8 shows the mean of ¢; and the variances of ¢,
¢ and g, as function of o7 forboth, an isotropic and a strongly
anisotropic case. Figures 8a and 8e show that ji(g;) increases
stronger with increasing o7 in the anisotropic case than in the
isotropic case. It can be concluded that the estimation of ju(g;)
by second-order approximation fitted quite well to the MC
results, for both, the isotropic and the anisotropic cases. The
median value of ¢; shows no visible response to variations in
o7 as well as in e (see Figures 8a and 8e).

[47] For the isotropic cases up to o3 = 0.5 (Figures 8b, 8c,
and 8d) it can be concluded that 6*(g;), 6*(¢s) and o°(¢,)
derived from the MC analysis agree better with first-order
than second-order approximation. This is astonishing be-
cause one would expect the second-order approximation to
fit better to the estimates from the MC analyses. However,
the second-order approximations in section 2.2 do not
consider second order head corrections, which is likely
the reason for the discrepancies between second-order
estimations and the results of the MC analyses at 0.5 <
0% < 1.5. On the other hand with decreasing 0% first- and
second-order approximations converge. Therefore at o3 =
0.01 and e = 1 there are only little differences between
first-order (0%(¢) = 0%(gn) = 7.0 x 107> m?*d*) and
second-order (0°(g) = 0°(gw) = 7.2 x 107> m%d?)
estimation. Also a MC analyses at 63=0.01 and e = 1 showed
a similar result (6°(q,,) = 0°(¢,) = 5.4 x 107> m?/d?), slightly
below first- and second-order estimation. Note that the MC
analyses with e =1 and 03 = 0.01 was not discussed in further
details but is based on the same procedures presented for those
MC analyses including e = 1.

[48] For the isotropic cases the second-order approxima-
tion of 6°(g,) is in accordance with the MC analyses for 0.5 <
o7 < 1.5. A further increase of o7 results in higher values of
5%(¢,) than predicted by second-order approximation. With
increasing o3, 0%(¢,) and 0(¢,) derived from the MC
analysis fit better with the second-order approximation than
with first-order approximation. It is interesting to note that the
non parametric estimates of the spreading of the velocity
distributions correspond well with the first-order approxima-
tion of 0%(¢,), 0°(q) and o>(qu).

[49] In the anisotropic cases an agreement between the
results of the MC analysis and the second-order approxi-
mation can be observed for 0%(g,) as a function o%
(Figure 8h). The non parametric estimates of o%(q,,) are
slightly below these results. For o3 < 1, 0%(g,) obtained
from second-order approximation and from MC analyses
are in good agreement (Figure 8f). For 03 > 1 the second-
order approximations of 0%(g;) underestimate the MC
results. In addition 0%(g;), estimated from MC analyses,
increases more rapidly with o} than the second-order
approximations. First-order approximations of 6%(¢;) under-
estimate both second-order approximations and MC results
of 0%(g)), also for small o%. Non parametric estimates of
0%(g,) agree with the first-order approximation at 0% = 0.5.
For higher o3, non parametric estimates of o%(g;) are in
between first- and second-order approximations, converging
toward the second-order approximation. The largest discrep-
ancies between the approximate solutions of the stochastic
flow equation and the MC analyses are observed for o°(¢,),
increasing more rapidly with increasing o3 in the MC
analyses (Figure 8g). Non parametric estimates of 02(g,,)
are slightly higher than second-order approximations.
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Figure 8. Estimated univariate ensemble statistics of the components of the Darcy velocity vector, ¢, as
a function of the variance of the logarithm of the hydraulic conductivity, o,*: (a and e) mean Darcy
velocity, (q;), (b and f) variance of the longitudinal component, 0%(g)), (c and g) variance of the
transverse horizontal component, 5%(g,,), and (d and h) variance of the transverse vertical component,

0%(¢,,), for an isotropic and a strongly anisotropic K field. In some cases the confidence interval of a
parameter is so small that the error bars are not visible.

[s0] Figure 9 gives an insight into the variances of the MC analyses show a stronger increase with decreasing e than
velocity components as a function of the anisotropy ratio, e, predicted by second-order apgroximation (Figure 9d). The
for 63=0.5 and 03 = 3. For small 63, °(¢,) decreases slightly ~non parametric estimates of 6°(¢;) from MC analyses fall in
with increasing e (Figure 9a). The 0%(g,) obtained from MC  between first- and second-order approximation.
analyses is in good agreement with the second-order approx- [51] For small 67, both stochastic approximations and the
imation. The non parametric estimates of 02(¢,) agree well MC analyses predict increasing values of 0(g,) with

with the first-order approximation. For 63 =3, 0%(¢,) from the  increasing e. The second-order approximation is in better
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Figure 9. Estimated ensemble variances of the components of the Darcy velocity vector, ¢, as a
function of the anisotropy, e: (a and d) variance of the longitudinal component, o°(¢,), (b and e) variance
of the transverse horizontal component, 0(¢,), and (¢ and f) variance of the vertical transverse
2 . . . . .. 2
component, 0°(g,,), for two different variances of the logarithm of the hydraulic conductivity, o). In

some cases the confidence interval of a parameter is so small that the error bars are not visible.

agreement with the MC analyses than the first-order ap-
proximation (Figure 9b). This agreement is not found for
the cases o3 = 3 (Figure 9e). While the first- and second-
order approximate solutions of the stochastic flow equation
predicted an increasing value of 0%(g,,) with increasing e,
the MC analyses predict relatively constant and larger
values of oz(q,h). It is remarkable that the oz(qth) derived
from MC analyses is of the same order of magnitude as the
second-order approximation of o(g,;) for high values of e,
which converges to 0.3 (not shown in Figure 9¢). The non
parametric estimated o%(q;,) also shows a relatively constant
value but at a lower level.

[52] Both first- and second-order approximations and the
MC analyses show increasing 02(¢,,) values with increasing
e. Ato3=0.5, 0°(¢,) derived from MC analyses fits better to
the second-order approximation at small e, and better to the
first-order approximation when e is closer to 1 (Figure 9c).
At 03 = 3.0, 0%(¢,,) derived from MC analyses fits well to
the second-order approximation (Figure 9f). The non para-

metric estimation of o2(g,,) fits better to second-order
approximation at small e and better to first-order approxi-
mation at e close to 1 at o3 = 0.5 and o7 = 3.0.

4.2. Spatial Correlation of Velocity

[s3] The MC analyses shows that with increasing o7y the
spatial correlation decreases more rapidly with separation
distance (see Figure 10). This can be observed for longitu-
dinal as well as for the transverse components and is more
pronounced for the anisotropic than for the isotropic case.
For the correlation of the transverse velocity components
simultaneously the negative correlations, in absolute terms,
decrease with increasing 3. In contrast to this, the first-order
approximation of the spatial correlations of ¢ are indepen-
dent of o7. However, in the isotropic case (Figures 10a,
10b, and 10c) the agreement between the MC analyses
and the first-order approximation is fairly good, at least
for 03 < 1. Also in the anisotropic case, the longitudinal
component p (g,) is in good agreement with the first-order
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Figure 10. Estimated correlat10ns in the longitudinal direction for different variances of the logarithm of
the hydraullc conductmty, oy Along the abscissa the normalized lag distance, I = £/\,, is applied. The
correlation is given for the three components of the velocity vector: (a and d) longitudinal component,
p(qy), (b and e) horizontal transverse component, p(¢,), and (c and f) vertical transverse component,

p(qw)-

approximation up to o3 = 3 (see Figure 10d). The correla-
tion of the vertical transverse component p (g,) in the
anisotropic case shows good agreement between MC anal-
yses and first-order approximation at least for o3 < 3
(Figure 10f). The correlation of the horizontal transverse
component p (q,,) derived from the MC analyses shows a
less good agreement with the first-order approximations.
Figure 10e shows that the negative correlations, in absolute
terms, are small in the function of p (¢,,) specially for higher
o%. Since the occurrence of the negative correlations in the
correlograms of the transverse velocity components is a
straightforward consequence of the continuity equation
[see, e.g., Rubin, 2003] and therefore should be present, the
following discussion is focused on that issue: In Figures 11a
and 11b the ensemble correlogram is presented together with
the ensemble 1nd1cat0r correlogram (cutoff = 0) for the cases
07=0.5 and 07 =3.0 at e = 0.017. In the case o3 = 0.5 both
correlogram and indicator correlogram fit relatively well to

the first-order approximation. In the case o3 = 3.0 only the
indicator correlogram shows a relatively good fit to the first-
order approximation. It can be seen that the deviation
between ensemble correlogram and ensemble indicator
correlogram are relatively small for o3 = 0.5, but obvious
for 63 = 3.0. Therefore the estimation of P (qth) seems to be
strongly depending on the nonnormality of the probability
density distribution of ¢,. In fact, the kurtosis of ¢,
increases at least by one order of magnitude with oy
increasing from 0.5 to 3.0 (see section 4.1). We suggest
that the extremely high and extremely low values of ¢, in
the tailing of the very peak shaped probability density
distribution with high kurtosis, destroy the spatial correla-
tion structure of the flow velocity fields. As a consequence
the correlations decrease more rapid with the separation
distance and the negative correlations, in absolute terms, are
decreasing simultaneously. Moreover, Figure 1lc shows
clearly that the shape of the indicator correlograms are

12 of 15



W03418

1
a) "MC Analysés at 02Y=0.5 Correlogrefm +
MC Analyses at 6°y=0.5 Indicator Correlogram ~ x
0.8 1st order theory E
0.6 ) E
— X "
=
k=) 04 r ><>< tr T
< +
++
e
0.2 ++++ i
O - i
0.2 1 1 1 1
0 2 4 6 8 10
b |
1
) "MC Analyses at 02Y=3.b Correlogrz-fm +
MC Analyses at 6°y=3.0 Indicator Correlogram  x
0.8 1st order theory 4
0.6 B E
— X
<
E'j 04 r jQ<>< T
< +
02 * E
+
*
0 * ki
L s |
0-2 Il Il Il Il
0 2 4 6 8 10
|
1
C) " realization 1 +
realization 2 X
b realization 3 *
0.8 2 realization 4 = 1
realization 5 L]
! realization 6 o
0.6 ¥ realization 7 . B
realization 8 a
realization 9 .
realization 10 v
0.4 1st order theory —— |
g
S 02}
o -
.02 L
-04
Il Il Il Il
0 2 4 6 8 10
|
Figure 11. Estimated correlograms and indicator correlo-

grams (cutoff = 0) of the transverse horizontal velocity
component in the longitudinal direction for different
variances of the logarithm of the hydraulic conductivity in
a strongly anisotropic case (e = 0.017). Along the abscissa
the normalized lag distance, / = &/X;,, is applied. The
ensemble correlograms and indicator correlograms are
given for (a) of = 0.5 and (b) o7 = 3.0. (c) Indicator
correlograms at o7 = 3.0 for single realizations.

extremely variable comparing single realizations. Therefore
it cannot be excluded that the correlograms are not statis-
tically converged. We suggest that this is the reason for a
nonperfect fit between the ensemble indicator correlogram
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and the first-order theory. To prove that, MC analyses
including more realizations and larger domains are needed.

5. Summary and Conclusions

[s4] High-resolution 3-D Monte Carlo analyses were
conducted to derive velocity statistics for a range of
variances of the logarithm of the hydraulic conductivity
05 < 0% < 3.0 and anisotropy ratios 0.017 < e < 1. The
statistical ensemble parameters of the generated hydraulic
conductivity fields are in good accordance with the preset
input parameters. The flow simulations showed small rela-
tive mass balance errors. The influence of boundary con-
ditions on the velocity statistics was investigated in order to
extract an inner core from the entire flow domain, in which
the statistics of the velocity are unaffected by the boundary
conditions. These statistics can then be compared with those
of an infinite flow domain and consequently with those
from approximated solutions of the stochastic flow equa-
tion. From the ensemble statistics, following conclusions
can be drawn:

[s5] 1. The MC analyses show that with increasing o3
and increasing anisotropy the probability density function of
q; exhibits an increasing asymmetry with a tail to the right.
The kurtosis increases simultaneously. The probability den-
sity functions of both transverse components show an
increase of the kurtosis with increasing o3 and increasing
anisotropy.

[s6] 2. The mean Darcy velocity, (g;), increases with
increasing o7 and increasing anisotropy. This is fairly well
predicted by using second-order approximations. This holds
even for highly heterogeneous and strongly anisotropic
hydraulic conductivity fields.

[57] 3. The variance of the longitudinal component of the
Darcy velocity, 0%(g;), increases with increasing o3 and
increasing anisotropy. For isotropic cases this is well
predicted by the first-order approximation for o3 < 0.5.
For 0.5 < 03 < 2.5, 0%(g) is better predicted by the second-
order approximation. For o3 > 2.5 both the first- and
second-order approximation underestimate o*(g;). For
strongly anisotropic cases, 0°(g;) is predicted fairly well
for 0y < 1 by the second-order approximation. For higher
values of o3 both the first- and second-order approximation
underestimate 5%(q;).

[s8] 4. The variance of the transverse horizontal compo-
nent of the Darcy velocity, 6%(¢,,), increases with increasing
0%, and increasing anisotropy ratio. The latter is restricted to
relatively small o3. For higher o3, 0(g,,) is more or less
constant with e. In the isotropic case the first-order approx-
imations predict Gz(qth) fairly well for o7 < 0.5. If o7
increases, 02(¢y,) derived from the MC analyses are larger
than the first-order approximations, but converge toward the
second-order approximation. At 0% = 3, the second-order
approximation fits the results from the MC analyses fairly
well. In strongly anisotropic cases the first- and second-
orzder approximations underestimate 6%(¢,,), even for small
Oy.

[s9] 5. The variance of the transverse vertical component
of the Darcy velocity, 0%(g,), increases with increasing 0%
and increasing anisotropy ratio. In the isotropic cases
the behavior of 0°(g,) is equivalent to the behavior
of 6*(¢g,,). In anisotropic cases where o3 = 0.5, 0°(g,) is
better described by a first-order approximation. For higher
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0%, 0(q,) is fairly well predicted by the second-order
approximation.

[60] 6. In isotropic cases the correlation of the longitudinal
component of the Darcy velocity in longitudinal direction,
p(q)), is predicted fairly well using the first-order approxima-
tion. The correlations of the transverse components of
the Darcy velocity in longitudinal direction, p(g,) and
p(q.), are also fairly well predicted with the first-order
approximation. Solely the phenomenon that the correlations
decrease more rapidly with the separation distance and
simultaneously the negative correlations, in absolute terms,
are decreasing with increasing o3 is not predicted by the first-
order approximation.

[61] 7. In anisotropic cases up to o3 = 3.0, p(g,) is fairly
well predicted using the first-order approximation. The first-
order approximation of p(g,,) and p(q,,) is independent from
0%, whereas the MC analyses show a steeper decrease of the
correlation with the separation distance and simultaneously
a decrease of the negative correlations, in absolute terms,
with increasing o}. This is more pronounced for p(g,,) than
for p(qn).

[62] 8. We assume the discrepancies between approxi-
mate solutions of the stochastic flow equation and the
results of the MC analyses strongly depending on the
nonnormality of the probability density distribution of
the velocity. The deviation from a normal probability
density distribution increases with increasing o3 and anisot-
ropy. This results in an increase of the kurtosis of the
velocity by at least one order of magnitude. We suggest
that the extremely high and low values of the velocity
within the tailing of the very peak-shaped probability
density distribution with high kurtosis, destroy the spatial
correlation structure of the flow velocity fields and at the
same time increase the variances of the velocity.

[63] Although the MC analyses concentrate on flow only
the results in this study permit speculations regarding the
prediction of transport parameters. Chin and Wang [1992]
showed that in heterogeneous isotropic 3-D hydraulic
conductivity fields the estimation of the longitudinal dis-
persivity were correct for at least o3 = 1.5 using first-
order theory. The transverse dispersivities are correct only
for 03 = 0.5. Higher o3 lead to an underestimation of the
transverse dispersivities. We suggest that the use of second-
order approximations of the transverse dispersivities should
lead to better estimations. In heterogeneous anisotropic 3-D
hydraulic conductivity fields the estimation of the longitu-
dinal macrodispersivity is valid up to o3 = 0.4 and second-
order approximations up to o3 = 0.6 [Naff et al., 1998b]. An
increase of oy up to 0.9 shows increasing deviations
between MC results and second-order approximation
[Naff et al, 1998b, Figure 4]. On the basis of the
results of the present study we suggest a further increase
of 0% should lead to increasing underestimation of the
longitudinal macrodispersivity.
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