000052913 001__ 52913
000052913 005__ 20240712100911.0
000052913 0247_ $$2DOI$$a10.1029/2006JD007064
000052913 0247_ $$2WOS$$aWOS:000244708200002
000052913 0247_ $$2ISSN$$a0141-8637
000052913 0247_ $$2Handle$$a2128/20425
000052913 037__ $$aPreJuSER-52913
000052913 041__ $$aeng
000052913 082__ $$a550
000052913 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000052913 1001_ $$0P:(DE-HGF)0$$aKonopka, V. E.$$b0
000052913 245__ $$aOzone loss driven by nitrogen oxides and triggered by stratospheric warmings can outweigh the effect of halogens
000052913 260__ $$aWashington, DC$$bUnion$$c2007
000052913 300__ $$aD05105
000052913 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000052913 3367_ $$2DataCite$$aOutput Types/Journal article
000052913 3367_ $$00$$2EndNote$$aJournal Article
000052913 3367_ $$2BibTeX$$aARTICLE
000052913 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000052913 3367_ $$2DRIVER$$aarticle
000052913 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v112$$x0148-0227
000052913 500__ $$aRecord converted from VDB: 12.11.2012
000052913 520__ $$aOzone loss in the lower and middle stratosphere in spring and summer, in particular over polar regions, is driven mainly by halogens and nitrogen oxides (NOx). Whereas the stratospheric chlorine levels are expected to decrease in the future, the role of NOx for the O-3 budget in a changing climate is not well quantified. Here we combine satellite measurements and model simulations to diagnose the accumulated O-3 loss during winter and spring 2002-2003 in the Arctic polar stratosphere. We show that in a winter stratosphere strongly disturbed by warmings, O-3 loss processes driven by halogens and NOx can significantly overlap within the polar column and become comparable in magnitude even if a significant, halogen- induced O-3 loss has occurred. Whereas, until the beginning of March 2003, polar column O-3 loss was mainly caused by the halogen chemistry within the vortex at an altitude around 18 km, the chemical O3 destruction in March and April was dominated by the NOx chemistry in O3-rich air masses transported from the subtropics and mixed with the polar air above the region affected by the halogens. This NOx-related O-3 loss started around mid-December 2002 in subtropical air masses above 30 km that moved poleward after the major warming in January, descended to 22 km with an increasing magnitude of O-3 loss and reached surprisingly high values of up to 50% local loss around the end of April. To some extent, the NOx-driven O-3 loss was enhanced by mesospheric air trapped in the vortex at the beginning of the winter as a layer of few km in the vertical and transported downward within the vortex. The effect of NOx transported from the subtropics dominated the O-3 loss processes in the polar stratosphere in spring 2003, both relative to the effect of the halogens and relative to the contribution of the mesospheric NOx sources. A comparison with the 1999/2000 Arctic winter and with the Antarctic vortex split event in 2002 shows that wave events triggered by stratospheric warmings may significantly enhance O3 loss driven by NOx when O-3- and NOx- rich air masses from the subtropics are transported poleward and are mixed with the vortex air.
000052913 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000052913 588__ $$aDataset connected to Web of Science
000052913 650_7 $$2WoSType$$aJ
000052913 7001_ $$0P:(DE-HGF)0$$aEngel, A.$$b1
000052913 7001_ $$0P:(DE-HGF)0$$aFunke, B.$$b2
000052913 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b3$$uFZJ
000052913 7001_ $$0P:(DE-HGF)0$$aGrooß, J.-U.$$b4
000052913 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b5$$uFZJ
000052913 7001_ $$0P:(DE-HGF)0$$aWetter, T.$$b6
000052913 7001_ $$0P:(DE-HGF)0$$aStiller, G. P.$$b7
000052913 7001_ $$0P:(DE-HGF)0$$avon Clarmann, T.$$b8
000052913 7001_ $$0P:(DE-HGF)0$$aGlatthor, N.$$b9
000052913 7001_ $$0P:(DE-HGF)0$$aOelhaf, H.$$b10
000052913 7001_ $$0P:(DE-HGF)0$$aWetzel, G.$$b11
000052913 7001_ $$0P:(DE-HGF)0$$aLopez-Puertas, M.$$b12
000052913 7001_ $$0P:(DE-HGF)0$$aPirre, M.$$b13
000052913 7001_ $$0P:(DE-HGF)0$$aHuret, N.$$b14
000052913 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b15$$uFZJ
000052913 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2006JD007064$$gVol. 112, p. D05105$$pD05105$$q112<D05105$$tJournal of geophysical research / Atmospheres $$tJournal of Geophysical Research$$v112$$x0148-0227$$y2007
000052913 8567_ $$uhttp://dx.doi.org/10.1029/2006JD007064
000052913 8564_ $$uhttps://juser.fz-juelich.de/record/52913/files/2006JD007064.pdf$$yOpenAccess
000052913 8564_ $$uhttps://juser.fz-juelich.de/record/52913/files/2006JD007064.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000052913 909CO $$ooai:juser.fz-juelich.de:52913$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000052913 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000052913 9141_ $$y2007
000052913 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000052913 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000052913 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000052913 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000052913 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000052913 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000052913 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000052913 9201_ $$0I:(DE-Juel1)VDB790$$d30.09.2010$$gICG$$kICG-1$$lStratosphäre$$x1
000052913 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x2
000052913 970__ $$aVDB:(DE-Juel1)83243
000052913 9801_ $$aFullTexts
000052913 980__ $$aVDB
000052913 980__ $$aConvertedRecord
000052913 980__ $$ajournal
000052913 980__ $$aI:(DE-Juel1)IEK-7-20101013
000052913 980__ $$aI:(DE-Juel1)VDB1045
000052913 980__ $$aUNRESTRICTED
000052913 981__ $$aI:(DE-Juel1)ICE-4-20101013
000052913 981__ $$aI:(DE-Juel1)IEK-7-20101013
000052913 981__ $$aI:(DE-Juel1)VDB1045