000052923 001__ 52923
000052923 005__ 20240712100947.0
000052923 0247_ $$2pmid$$apmid:16942049
000052923 0247_ $$2DOI$$a10.1021/jp062403c
000052923 0247_ $$2WOS$$aWOS:000240149200009
000052923 0247_ $$2Handle$$a2128/779
000052923 037__ $$aPreJuSER-52923
000052923 041__ $$aeng
000052923 082__ $$a530
000052923 084__ $$2WoS$$aChemistry, Physical
000052923 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000052923 1001_ $$0P:(DE-HGF)0$$aAnttila, T.$$b0
000052923 245__ $$aOn the reactive uptake of gaseous compounds by organic-coated aqueous aerosols: Theoretical analysis and application to the heterogeneous hydrolysis of N2O5
000052923 260__ $$aWashington, DC$$bSoc.$$c2006
000052923 300__ $$a10435 - 10443
000052923 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000052923 3367_ $$2DataCite$$aOutput Types/Journal article
000052923 3367_ $$00$$2EndNote$$aJournal Article
000052923 3367_ $$2BibTeX$$aARTICLE
000052923 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000052923 3367_ $$2DRIVER$$aarticle
000052923 440_0 $$03693$$aJournal of Physical Chemistry A$$v110$$x1089-5639
000052923 500__ $$aRecord converted from VDB: 12.11.2012
000052923 520__ $$aThe presence of organic coatings on aerosols may have important consequences to the atmospheric chemistry, in particular to the N2O5 heterogeneous hydrolysis. This is demonstrated by recent experiments which show that the uptake of N2O5 by aqueous aerosols is slowed considerably when an organic coating consisting of monoterpene oxidation products is added on the particles. To treat the mechanisms behind the suppression, an extension of the resistor model, which has been widely applied in investigation of the heterogeneous uptake by aerosols, was derived. The extension accounts for dissolution, diffusion, and chemical reactions in a multilayered organic coating, and it provides a parametrization for the heterogeneous uptake by organic-coated aerosols that can be applied in large-scale models. Moreover, the framework was applied to interpret the findings regarding the decreased uptake of N2O5 by the organic-coated aerosols. Performed calculations suggested that the reaction rate constant of N2O5 in the coating is decreased by 3-5 orders of magnitude, in addition to which the product of the solubility of N2O5 and its diffusion coefficient in the coating is reduced more than an order of magnitude compared to the corresponding value for the aqueous phase. The results suggest also that the accommodation coefficient of N2O5 to such coatings is no more than a factor of 2 smaller than that to pure water surfaces. Finally, the relevance of the results to the atmospheric N2O5 heterogeneous hydrolysis is discussed and implications to planning further laboratory studies focusing on secondary organic aerosol formation are pointed out.
000052923 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000052923 588__ $$aDataset connected to Web of Science, Pubmed
000052923 650_2 $$2MeSH$$aAerosols: chemistry
000052923 650_2 $$2MeSH$$aAir Pollutants: chemistry
000052923 650_2 $$2MeSH$$aHydrolysis
000052923 650_2 $$2MeSH$$aModels, Chemical
000052923 650_2 $$2MeSH$$aMonoterpenes: chemistry
000052923 650_2 $$2MeSH$$aNitrogen Oxides: chemistry
000052923 650_2 $$2MeSH$$aSurface Properties
000052923 650_2 $$2MeSH$$aWater: chemistry
000052923 650_7 $$00$$2NLM Chemicals$$aAerosols
000052923 650_7 $$00$$2NLM Chemicals$$aAir Pollutants
000052923 650_7 $$00$$2NLM Chemicals$$aMonoterpenes
000052923 650_7 $$00$$2NLM Chemicals$$aNitrogen Oxides
000052923 650_7 $$010102-03-1$$2NLM Chemicals$$anitrogen pentoxide
000052923 650_7 $$07732-18-5$$2NLM Chemicals$$aWater
000052923 650_7 $$2WoSType$$aJ
000052923 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, A.$$b1$$uFZJ
000052923 7001_ $$0P:(DE-Juel1)5344$$aTillmann, R.$$b2$$uFZJ
000052923 7001_ $$0P:(DE-Juel1)16346$$aMentel, T. F.$$b3$$uFZJ
000052923 773__ $$0PERI:(DE-600)2006031-2$$a10.1021/jp062403c$$gVol. 110, p. 10435 - 10443$$p10435 - 10443$$q110<10435 - 10443$$tThe @journal of physical chemistry <Washington, DC> / A$$v110$$x1089-5639$$y2006
000052923 8567_ $$uhttp://hdl.handle.net/2128/779$$uhttp://dx.doi.org/10.1021/jp062403c
000052923 8564_ $$uhttps://juser.fz-juelich.de/record/52923/files/83254.pdf$$yOpenAccess
000052923 8564_ $$uhttps://juser.fz-juelich.de/record/52923/files/83254.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000052923 8564_ $$uhttps://juser.fz-juelich.de/record/52923/files/83254.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000052923 8564_ $$uhttps://juser.fz-juelich.de/record/52923/files/83254.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000052923 909CO $$ooai:juser.fz-juelich.de:52923$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000052923 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000052923 9141_ $$y2006
000052923 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000052923 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000052923 9201_ $$0I:(DE-Juel1)VDB48$$d31.12.2006$$gICG$$kICG-II$$lTroposphäre$$x0
000052923 970__ $$aVDB:(DE-Juel1)83254
000052923 9801_ $$aFullTexts
000052923 980__ $$aVDB
000052923 980__ $$aJUWEL
000052923 980__ $$aConvertedRecord
000052923 980__ $$ajournal
000052923 980__ $$aI:(DE-Juel1)IEK-8-20101013
000052923 980__ $$aUNRESTRICTED
000052923 980__ $$aFullTexts
000052923 981__ $$aI:(DE-Juel1)ICE-3-20101013
000052923 981__ $$aI:(DE-Juel1)IEK-8-20101013