001     52925
005     20240709081804.0
024 7 _ |2 pmid
|a pmid:17090227
024 7 _ |2 DOI
|a 10.1146/annurev.physchem.58.032806.104432
024 7 _ |2 WOS
|a WOS:000246652300013
037 _ _ |a PreJuSER-52925
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
100 1 _ |a Rudich, Y.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Aging of organic aerosols: bridging the gap between laboratory and field studies
260 _ _ |a Palo Alto, Calif. [u.a.]
|b Annual Reviews
|c 2007
300 _ _ |a 321 - 352
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Annual Review of Physical Chemistry
|x 0066-426X
|0 15801
|v 58
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The oxidation of organics in aerosol particles affects the physical properties of aerosols through a process known as aging. Atmospheric particles compose a huge set of specific organic compounds, most of which have not been identified in field measurements. Laboratory experiments inevitably address model systems of reduced complexity to isolate critical chemical phenomena, but growing evidence suggests that composition effects may play a central role in the atmospheric aging of organic particles. In this review we seek to address the connections between recent laboratory studies and recent field campaigns addressing the aging of organic aerosols. We review laboratory studies on the uptake of oxidants, the evolution of particle-water interactions, and the evolution of particle density with aging. Finally, we review field data addressing condensed-phase lifetimes of organic tracers. These data suggest that although matrix effects identified in the laboratory have taken a step toward reconciling laboratory-field disagreements, further work is needed to understand the actual aging rates of organics in ambient particles.
536 _ _ |a Atmosphäre und Klima
|c P22
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK406
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Aerosols: chemistry
650 _ 2 |2 MeSH
|a Organic Chemicals: chemistry
650 _ 2 |2 MeSH
|a Oxidation-Reduction
650 _ 2 |2 MeSH
|a Ozone: chemistry
650 _ 2 |2 MeSH
|a Research: methods
650 _ 2 |2 MeSH
|a Time Factors
650 _ 7 |0 0
|2 NLM Chemicals
|a Aerosols
650 _ 7 |0 0
|2 NLM Chemicals
|a Organic Chemicals
650 _ 7 |0 10028-15-6
|2 NLM Chemicals
|a Ozone
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a heterogeneous atmospheric processes
653 2 0 |2 Author
|a hygroscopic properties
653 2 0 |2 Author
|a secondary organic aerosol
653 2 0 |2 Author
|a oligomerization
653 2 0 |2 Author
|a relative kinetics
653 2 0 |2 Author
|a chemical mechanisms
700 1 _ |a Donahue, N.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Mentel, T. F.
|b 2
|u FZJ
|0 P:(DE-Juel1)16346
773 _ _ |a 10.1146/annurev.physchem.58.032806.104432
|g Vol. 58, p. 321 - 352
|p 321 - 352
|q 58<321 - 352
|0 PERI:(DE-600)1470474-2
|t Annual review of physical chemistry
|v 58
|y 2007
|x 0066-426X
856 7 _ |u http://dx.doi.org/10.1146/annurev.physchem.58.032806.104432
909 C O |o oai:juser.fz-juelich.de:52925
|p VDB
913 1 _ |k P22
|v Atmosphäre und Klima
|l Atmosphäre und Klima
|b Umwelt
|z fortgesetzt als P23
|0 G:(DE-Juel1)FUEK406
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-2
|l Troposphäre
|d 30.09.2010
|g ICG
|0 I:(DE-Juel1)VDB791
|x 1
970 _ _ |a VDB:(DE-Juel1)83258
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)IEK-8-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21