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Abstract. Ozone depletion in the lower polar stratosphere is strongly

dependent on the the amount of chlorine activation that is controlled by polar

stratospheric cloud (PSC) occurrence and thus by temperature. We define a new

measure, the PSC formation potential (PFP), suitable for assessing ozone depletion

in both polar regions. In contrast to the previously defined volume of possible PSC

existence (VPSC), this measure is normalized by the vortex volume in accordance

with loss in column ozone averaged over the polar vortex and includes the lifetime

of the vortices. Chemical ozone loss, derived between 1991 and 2005 for Arctic and

Antarctic winters, correlates well with the PFP in the Arctic. In the Antarctic,

chemical ozone loss is saturated. The year-to-year variation of the PFP for the

Arctic has risen over the past thirty years with a maximum value in winter 2005.

Accordingly, maximum chemical ozone loss has reached Antarctic loss values.
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1. Introduction

Ozone-depleting substances are slowly decreasing in the atmosphere as a

consequence of the Montreal Protocol so that a recovery of the ozone layer is

expected over the coming decades [WMO , 2003]. The observed cooling of the polar

stratosphere in winter on an annual- and global-mean basis in the last two decades

[WMO , 2003] enhances the potential for both the existence of polar stratospheric

clouds (PSC). A compact relation between chemical ozone loss and the volume of air

below the temperature threshold for PSC existence (VPSC) was derived for Arctic

winters [Rex et al., 2004; Tilmes et al., 2004]. VPSC is used as a measure of the

potential for halogen activation in the polar vortex. However, VPSC is dependent on

the vortex volume, whereas the chemical loss in column ozone is independent of the

volume of the vortex because it is an average value over the entire vortex. Here, we

extend this measure to create a measure of halogen activation that is normalized

with the vortex volume and therefore suitable for comparison with chemical loss

in column ozone, the PSC formation potential (PFP). Using PFP instead of VPSC

is especially important if the volume of the different vortices considered differs

greatly, for example, in comparing Arctic and Antarctic conditions. This allows

us to discuss how climate change, i.e. changing temperatures and dynamics in the

stratosphere, may impact the potential for ozone destruction in the polar vortex.

Changing vortex dynamics may indeed have a significant impact on the ozone hole

polar winter and spring in the Antarctic [Huck et al., 2005]1. Moreover, we will

discuss the ozone column that would occur in the absence of chemical changes,

thus for assumed chemically unperturbed conditions (proxy ozone column [Tilmes

et al., 2006]) during winter and spring. Decreasing proxy ozone columns for the

1Huck et al. [2005] discuss the evolution of the ozone mass deficit calculated

between July and the end of November in the Antarctic. The ozone mass deficit is

not directly comparable with the chemical loss in column ozone averaged over the

polar vortex as derived here. Here, only the chemical signal is considered.
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Arctic indicates dynamical changes in the stratosphere.

2. Differences between Arctic and Antarctic Winter

Meteorology

The calculation of VPSC (Fig. 1, top panel) requires a given PSC threshold

temperature (TPSC). TPSC is defined here as the threshold temperature for the

existence of nitric acid trihydrate (NAT) [Hanson and Mauersberger , 1988]. It

is calculated assuming seasonally dependent stratospheric profiles of HNO3 and

H2O derived from ILAS-II observations for the Arctic and Antarctic, including

the effect of denitrification and dehydration. The UK Met Office (MetO) and

ECMWF reanalysis (ERA 40) [Randel et al., 2004, and refs. therein] are used to

calculate VPSC between 400-550 K potential temperature. The ERA40 reanalysis

is unreliable in the Antarctic before the satellite era in 1979 [Randel et al., 2004;

Simmons et al., 2004] and will not be investigated. Further, Antarctic temperatures

after 1979 in ERA40 show a cold bias and an unrealistic vertical structure [Manney

et al., 2005a, b; Randel et al., 2004]. Therefore, MetO VPSC values are slightly lower

than the ERA40 data. Additionally, VPSC was derived using ECMWF operational

analyses and data from the Free University of Berlin (FU-Berlin) [Rex et al., 2004],

averaged between 360–550 K (Fig 1, top panel, red and green symbols). The

impact of averages of different altitude intervals for the calculation of VPSC is small

(see electr. suppl.). For the Arctic, the different data sets agree rather well between

1966 and 1998 [Manney et al., 2005a]. Before 1966, radiosonde instrumentation

was limited in the Arctic stratosphere and temperatures are very uncertain. In

summary, between 1966 and 1998, the conclusions from all long-term meteorological

data sets about the general evolution of VPSC are consistent [Manney et al., 2005a].

Figure 1.

Antarctic temperatures are in general below the PSC threshold for most of the

winter between mid-May and the end of September. The variation of VPSC between

different winters using MetO data is small. ERA40 and MetO data indicate a slight
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increase of VPSC between 1991 and 2005 as well as a stronger variability during the

last four years (Fig. 1, top panel, colored triangles). VPSC in the Arctic is much

smaller than in the Antarctic and shows a strong variation between warm and cold

winters (between 0.1 × 107 km3 in 2001–2002 and 4.6 × 107 km3 in 2005, based on

MetO analysis). An increase of large VPSC values, especially in the last decade, is

obvious as described by Rex et al. [2004].

The volume of the vortex (VVortex) (Fig. 1, middle panel) – which is the volume

enclosed by the vortex edge, defined as the location of the maximum gradient of

potential vorticity (PV) [Nash et al., 1996] – is significantly larger for the Antarctic

than for the Arctic. The evolution of MetO and ERA40 values is in agreement,

with differences of less than 10% in the overlapping time period. Although VPSC

depends on VVortex, the two values are not correlated (Fig. 1, top and middle

panel). The Arctic and Antarctic VVortex values indicate a decrease since 1979,

which is most significant since 1998 for the Antarctic, whereas VPSC have increased

slightly since 1990.

The vortex volume should not have an impact on the loss in column ozone

averaged over the vortex. To normalize VPSC the ratio between VVortex is derived as

a measure of the possible fraction of the vortex volume exposed by PSCs. A large

value of this ratio is expected to correspond to large ozone loss rates independent of

the lifetime of the vortex. To obtain a measure of the ozone loss potential in each

winter, which is also determined by the lifetime of the vortex, we integrated the

value VPSC / VVortex over all days when the vortex existed (using the Nash criterion

for 3 potential temperature levels: 475 K, 550K and 650 K) between mid-June and

September for Antarctic winters and between mid-December and the end of March

for Arctic winters and then divided this sum by the number of days in the period

considered. This quantity will be referred to as “PSC formation potential of the

polar vortex” (PFP) and is suitable for correlation with the accumulated loss in

column ozone in both hemispheres, because it is normalized with regard to VVortex.

Antarctic PFP values for the MetO and ERA40 data are in agreement within
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10% during the overlapping time period. Between 1991 and 2005, PFP indicates

an increase of ≈ 25% for Antarctic and cold Arctic winters (Fig. 1, bottom panel

and Figure 2). Further, the variation of the Arctic PFP has increased during the

last 30 years with the largest value occurring in winter 2005 and the smallest value

occurring in 2004. PFP for the coldest Arctic winter is ≈ 27% smaller compared

to the smaller PFP value derived for the Antarctic. In 1995 and 1998 radiosonde

instrumentation changed at many stations with a systematic bias between the two

instrument types. For Alaska stations, an apparent warming of up to 2 K during

the nighttime and a cooling during daytime at 50-100 hPa is reported [Elliott et al.,

2002]. Underestimated nighttime temperatures – most of the PSC are likely to

occur during the night – lead to an overestimation of VPSC before 1995/1998. Any

conclusion of increasing VPSC and the resulting increasing PFP since 1995/1998

can therefore not be an artifact caused by changes in radiosonde instrumentation.

3. Calculation of Chemical Loss in Column Ozone

Chemical ozone loss for the Antarctic is derived from HALOE satellite

measurements [Russell et al., 1993] using the tracer-tracer correlation method [e.g.,

Proffitt et al., 1990; Tilmes et al., 2004; Müller et al., 2005]. A detailed description

of the technique and a discussion about uncertainties due to mixing processes is

given in Tilmes et al. [2004]; Engel et al. [2006]; Müller et al. [2005]. It is shown

that this technique is a reliable tool for calculating chemical ozone loss. Antarctic

ozone loss is derived here using tracer-tracer correlations in a similar manner to

that used for the Arctic. Using this technique, the early winter reference function

has to be derived carefully to calculate chemical ozone loss [Tilmes et al., 2004;

Müller et al., 2005]. For the Antarctic, no HALOE observations are available in the

early vortex. Therefore, ILAS and ILAS-II O3/N2O relations for winters 1997 and

2003 are converted to an O3/CH4 relation for application to HALOE measurements.

For this purpose, we use a CH4/N2O relation derived (see electr. suppl.) using 11

flights from whole air sampler measurements between 1995 and 2002, at different
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seasons, and measured at high northern latitudes [Engel et al., 2002]. ATMOS

measurements [Michelsen et al., 1998] show that very similar relations between

CH4/N2O in the Arctic and Antarctic (Plate 2 of that paper), thus, we assume the

derived relation to be also valid for Antarctic conditions. Further, we use CH4/HF

relations derived from HALOE measurements to calculate the O3/HF reference

relation as described in detail by Tilmes et al. [2004].

Antarctic chemical ozone loss in column between 350–550 K was derived for all

HALOE measurements available inside the vortex core – poleward of the poleward

edge of the vortex [Nash et al., 1996] – using HF as the long-lived tracer (Fig.2,

electr. suppl.). Owing to the orbit of the HALOE instrument and the location of

the polar vortex, in some winters there are no measurements available in the second

part of September/October (5 out of 13) for the Antarctic and in March/April (3

out of 14) for the Arctic and therefore no ozone loss values are available for the

analysis in Section 4, in Fig. 2.

Arctic chemical ozone loss was derived in a previous study [Tilmes et al., 2004]

for winters between 1991–92 and 2002–03 between 380–550 K and for winter 2005

by von Hobe et al. [2006] using tracer-tracer correlations. As shown by Tilmes

et al. [2004], no significant ozone loss was observed below 380 K before winter 2005.

Further, the amount of ozone loss differences between different winters above 550 K

[Hoppel et al., 2005] is insignificant if loss in column ozone is considered. Chemical

ozone loss values derived from ozone soundings are available between 1992 and

2004 [Rex et al., 2004] and for winter 2005 [Rex , 2006].

4. Ozone Loss and PSC Formation Potential

Chemical ozone loss, as described in Section 3, is shown in relation to PFP in

Figure 2. Here, PFP is averaged between 350-550 K based on the MetO analysis. Figure 2.

The relation between ozone loss and PFP in the Arctic is more compact compared

to the previously deduced relation between ozone loss and VPSC [Tilmes et al.,

2004; Rex et al., 2004]. In winter 2005, chemical loss in column ozone reached
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Antarctic values, whereas the PFP value is significantly smaller than Antarctic

values (Fig. 2), as explained below. The study by Manney et al. [2006] showed

that Arctic local chemical ozone loss in 2005 did not reach the very large values

observed in winter 2000. However, in considering chemical loss in column ozone,

winter 2005 reached maximum values. This winter is characterized by significant

ozone destruction at very low altitudes below 460 K [von Hobe et al., 2006; Rex ,

2006]. For the Antarctic, the column ozone loss does not change with changing PFP

within the uncertainty of the results. This is because the column of proxy ozone in

the Antarctic does not differ much from values in column ozone loss. Therefore,

chemical ozone loss is almost saturated in this region and although the potential

for further ozone loss exists, no ozone is available at lower altitudes (as shown

by Tilmes et al. [e.g., 2006]). The chemical signal of Antarctic ozone depletion

averaged over the polar vortex does not show any evidence of a chemical recovery

due to decreasing chlorine content [Engel et al., 2002], but rather indicates a slight

increase calculated between 350 and 550 K potential temperature (see Figure 2).

The recovery due to decreasing stratospheric chlorine content will become visible

if the saturation (that already occurred in the nineties) no longer occurs, which

cannot be expected before ≈ 2015 [Newman et al., 2004].

For the Arctic, proxy ozone is substantially larger in comparison to austral

spring (Fig. 2, open triangles). Slightly smaller values of proxy ozone are obvious

for colder and less disturbed Arctic winters. For cold Arctic winters, less than

half the amount of the proxy ozone is destroyed at the altitudes considered.

Therefore, the potential for larger amounts of chemical ozone loss is present for

the Arctic winters in the near future until the halogen loading of the stratosphere

has significantly decreased. The effect of Pinatubo on chemical ozone loss based

on HALOE observations in Arctic winters 1992 and 1993 is significantly larger

than that derived from ozone soundings and other studies [e.g., Lucic et al., 1999;

Manney et al., 1994].
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5. Discussion and Conclusion

We use 47 years of meteorological analyses and 14 years of satellite data to

analyze the sensitivity of chemical ozone loss in both the Arctic and Antarctic to

temperature changes and, extending the work of Rex et al. [2004], to dynamical

changes in the polar stratosphere. The meteorological conditions are different in the

two hemispheres and both the column ozone at the beginning of the winter and the

proxy ozone during the winter are much larger in the Arctic. For the cold Arctic

and Antarctic winters, PFP has been increasing over the last 30 years because of

decreasing temperatures and decreasing vortex volume. Correspondingly, chemical

ozone loss values in the Arctic reached Antarctic values in 2005, whereas the

entire ozone column is much larger in the Arctic compared to the Antarctic.

The linear relation between column ozone loss and PFP indicates a potential for

further increasing ozone loss values in the near future, because Arctic ozone loss

is currently not saturated. Antarctic chemical ozone loss is almost saturated and

therefore, increasing PFP cannot change ozone loss values. Increasing chemical

ozone loss might occur if the recent tendency for greater variability of Arctic winter

conditions is driven by increasing greenhouse gases. Further, stronger planetary

wave activity may enhance the proxy ozone in early winter. This may change the

volume of the vortex for both the Arctic and Antarctic and therefore impact the

PFP and thus chemical ozone loss.

Three-dimensional coupled chemistry climate models (CCMs), the main tool

for predicting the future of polar ozone, show deficiencies in particular with regard

to the prediction of temperatures and dynamics of the polar stratosphere [e.g.,

WMO , 2003]. It has been suggested that the relation between PSC formation

potential and ozone loss could be used to evaluate the temperature sensitivity of

accumulated polar chemical ozone loss in CCMs [Eyring et al., 2005]. Different

vortex volumes simulated by different climate models may have a significant impact

on the simulated ozone loss. Using the PFP instead of VPSC to describe the climate

sensitivity of chemical ozone loss in CCMs, the impact of different vortex dynamics
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will be separated from the chemical signal. In this way, the chemical signal of

ozone changes can be analyzed although models might miscalculate the volume

of the vortex. Therefore, using the PFP is also recommended for assessing the

performance of CCMs.
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Figure Captions
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Figure 1. VPSC (top panel), VVortex (middle panel) and PFP (bottom panel) (see text) aver-

aged between 400–550 K and between mid-June and the end of September for Antarctic winters

(triangles) and between mid-December and the end of March for Arctic winters (diamonds) be-

tween 1991 and 2005 derived using MetO analyses (colored symbols, connected by a dashed

line) and between 1958 (1979 for the Antarctic) and 1999 using ECMWF reanalysis (ERA 40)

(gray/black solid symbols, connected by a dotted line). Arctic VPSC based on FU-Berlin mete-

orological data (red diamonds) and ECMWF ERA-15 data extended by operational ECMWF

analysis (green diamonds), averaged between 360 and 550 K are shown.
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Figure 2. Relation between the column ozone loss (DU) in March (NH) and second part of

September and October (SH) and PFP for the years 1992 to 2005 between 350–550 K using

the tracer-tracer method (colored solid squares). Correspondingly, the column in proxy ozone

is shown, open symbols. The linear relation for the Arctic (calculated excluding winters 1992

and 1993 that are strongly impacted by the eruption of Mt. Pinatubo, open squares) is shown

as a black line. Moreover, ozone loss values calculated from ozone sounding [Rex et al., 2004]

are shown (open circles) and from the O3 measurements onboard M55 Geophysica (solid circle)

[von Hobe et al., 2006].


