First-principles investigation of Co wires at Pt(111) step-edges
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Abstract

We report on ab initio calculations of Pt(111) B-type step-edges decorated with Co chains of different thickness.
As found experimentally, these Co n-wires show for n = 1 (monowire) a large magnetic anisotropy that decreases
for larger n in a non-monotonous way. Also the easy axis shows a oscillatory behavior with increasing n that can
be traced back to competing effects arising from different strands of the thicker wires.
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1. Introduction

Transition-metal (TM) decorated step edges,
e.g. of vicinal surfaces, are a fascinating natu-
ral laboratory for the physics of low-dimensional,
sometimes magnetic, systems. Quasi one-dimen-
sional magnets have shown many unique proper-
ties, like very large orbital moments and large mag-
netic anisotropy energies (MAE) as a consequence.
For the magnetic order in the one-dimensional
system, the anisotropy is a determining factor. It
is the magnetocrystalline anisotropy energy that
allows us to study the magnetic properties of these
systems at finite temperatures.

Due to their low symmetry, decorated step edges
also allow the possibility to have easy magnetic
axes in many different directions. If the easy axis
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of magnetization is not oriented along the step-
edge, in principle every direction perpendicular to
this direction can be a favored magnetization axis.
For a single Co chain on the B-type step-edge of a
Pt(111) surface (specifically on a Pt(997) surface)
the easy axis was found to be perpendicular to the
wire direction and under an angle of 43° with the
terrace normal pointing in the direction of the up-
per terrace [1].

In a later series of experiments, two- and more-
stranded Co chains were grown along these Pt
step-edges. Measuring the magnetization along
different directions, Gambardella et al.[2] found
a reorientation of the easy axis from 46° for
the single-stranded wire to —60° for the double-
stranded one and —61° for the four-stranded wire,
to finally almost perpendicular to the vicinal sur-
face for more than one monolayer coverage. These
oscillations of the easy axes were accompanied by
a quite unexpected variation of the MAE. For a
double-wire, the MAE at 45 K dropped from 2.0
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to merely 0.33 meV/Co atom, but then went up
again to 0.45 meV/Co atom for the triple-wire
and finally, for more than a full monolayer cov-
erage, the MAE decreases again to 0.15 meV/Co
atom at 262 K. (Depending on the method how
to extract these numbers from the experimental
magnetization curves, this variation can be even
larger.) So, instead of a continuous decrease, as
one could expect from the analysis of Co clusters of
different size on Pt(111) [3], one observes an oscil-
lation. Tight-binding calculations of unsupported
chains of different width have already indicated
the possibility of such oscillatory behavior [4].

The aim of this communication is now to iden-
tify the underlying mechanism that causes these
variations in MAE and the directions of the easy
axis. We present first-principles calculations that
show that the observed behavior is already present
without taking into account possible relaxations or
dislocations, that could also give rise to the non-
monotonic behavior of the MAE and easy axes. In-
stead, we find a competition of influences from the
row at the step-edge and rows that are adjacent to
the Pt part of the terrace. Using a simple model to
motivate the different behavior of these rows, we
can finally simulate the complex behavior of the
magnetic properties in these systems.

2. Structural model and computational
method

As a model for the stepped surfaces, we calcu-
lated vicinal Pt(111) surfaces of a terrace width of
6 atomic rows. On a (111) surface, a (111) micro-
faceted (or B-type) with a terrace width of p full
atomic rows is notated by (p,p,p—2). Therefore, we
calculated films of Pt(664) surfaces with a thick-
ness of about 8 layers of fcc (111)-type, resulting in
total in 45 atoms per unit cell. For the simulation
of the wires, we substituted the Pt atoms starting
from the edge by Co.

The calculations are based on the (spin) den-
sity functional theory in the generalized gradient
approximation [5]. We used the full-potential
linearized augmented plane wave (FLAPW) [6]
method in the FLEUR implementation. Spin-

Table 1

(Spin) Magnetic moments (in pug) of an unsupported Co
chain, supported n-chains (n = 1 — 6) on Pt(664) and Co
monolayers on Pt(111). In the columns 1 — 6, the topmost
number always corresponds to the step-edge atom.

unsupp. Co/Pt(664) Co/Pt(111)
chain 1 2 3 4 5 6 fcc  hep
2.33 2.14 2.08 2.08 2.08 2.08 2.04 2.06 2.07

2.09 2.05 2.05 2.04 2.02
2.09 2.04 2.04 2.04
2.09 2.05 2.04

2.09 2.06

2.02

orbit coupling was included as described in Ref.[8].
For all structures the calculated Pt(111) in-plane
lattice constant (2.82 A, the experimental value
is 2.77 A) was used. For these calculations ap-
prox. 80 basisfunctions/atom and 5 kj-points in
the irreducible part of the surface Brillouin zone
(2D-BZ) have been used. For the calculation of
the magnetocrystalline anisotropy energy (MCA)
with the magnetic force-theorem we started from
an self-consistent calculation with spin-orbit cou-
pling included and then used 128 k-points in the
full 2D-BZ. The applicability of this procedure was
checked in Ref. [9]. No relaxations were included in
the present calculations. An investigation of their
influence on the easy axis for a single Co chain on
Pt(664) can also be found in Ref. [9].

The magnetic anisotropy energy (MAE) is a sum
of the MCA and the shape anisotropy (SA). Taking
only the latter into account, in a single stranded
wire the hard axis would be in a plane perpendic-
ular to the wire direction. In flat, multi-stranded
wires the SA puts the medium axis in the plane of
the stripe formed by the strands of the wire, i.e. it
causes an additional anisotropy in the plane per-
pendicular to the wire. In our case this anisotropy
is in the order of 0.1 meV/atom, i.e. in most cases
much smaller than the MCA. Therefore, the SA
will not be considered in the following.

3. Results

When we compare the spin magnetic moments,
s, of the chains of different width (table 1), we



Fig. 1. Schematic drawing of a (111) B-type step-edge dec-
orated with one (left) and three chains (right). In the cal-
culations the spin-quantization axis was varied in a plane
perpendicular to the wire by an angle 6 as indicated on
the left.

notice that the single Co wire at the Pt step-edge
has a magnetic moment that is larger than the
moment of a Co monolayer on Pt(111), but sub-
stantially smaller than the unsupported monowire.
Chains that consist of more than one strand have
magnetic moments that are very similar to that of
the supported monolayer. For n-chains with n =
2 — 5, we see that the step-edge atom always has a
slightly higher moment of 2.08u5, as could be ex-
pected from its lower coordination number. Also
the innermost strand, that has more Pt nearest-
neighbors than the other strands, has a higher mag-
netic moment of 2.09up, while the inner Co-rows
show moments of 2.04 or 2.05up. The spin mag-
netic moments 6-chain differs from these findings,
which is understandable, since on a (664) vicinal
surface the 6-chain corresponds to a complete Co
overlayer. Although the variations of the spin mo-
ments of the n-chains for n > 1 are very small,
the trends concluded from these values should be
reflected quite reliably.

Now we turn to the analysis of the magnetocrys-
talline anisotropy energy (MAE) of the chains of
different width. In Fig. 2 we show the variation of
the energy as a function of magnetization direc-
tion or, more precise, the spin-quantization axis
imposed by the calculation. The variation of the
magnetization direction was restricted to a plane
perpendicular to the wire directions (these were
also the experimentally investigated directions).
We characterize the direction by an angle 6 which
is zero for the surface normal and positive for direc-
tions pointing towards the upper terrace (Fig. 1).
For the deposited Co monowire, we find the al-
ready reported results [9] of a rather large MAE
of almost 2.5 meV and an easy axis that is tilted
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Fig. 2. (color online) Magnetocrystalline anisotropy energy
(MAE, full diamonds) and average orbital moment on Co
(empty circles) for Co chains of different width (denoted
by n) on Pt(664). Note the different scales for MAE (left)
and orbital moments (right).

by 51° with respect to the surface normal in the
direction of the upper terrace. In sharp contrast
to this result, the Co double-wire shows a much
smaller magnetic anisotropy (0.15 meV) and an
easy axis with an angle § = —19°, i.e. pointing
away from the upper terrace. This drop of MAE is
also accompanied by a decrease of orbital moment
anisotropy, i.e. the average orbital moment of the
double chain is almost constant as a function of the
angle 6. The n-chains with n = 3 — 5 show again
larger magnetic anisotropies and the direction of
the easy axis varies from —15° for the 3-wire to
—40° and +14° for the 4- and 5-wire. As we in-
crease the numbers of strands beyond 3, the MAE
decreases again, from 0.99 meV for the 3-wire, to
0.82 meV and 0.50 meV/Co atom for the 4- and 5
wires, respectively. The 6-wire is again rather UN-
typical in this sequence and has a high anisotropy
(1.55 meV) and an easy axis of —58°.



When we compare these results to the experi-
mental data, we find an astonishing agreement in
the trends: the pronounced drop MAE and in or-
bital moment when going from the monowire to the
double-wire, then again the unexpected increase of
the MAE for the 4-wire, finally a decrease of these
values as the coverage increases further. Experi-
mentally the MAE drops from about 2 meV/Co
atom for the monowire to 0.33 meV for the double-
wire and increases to 0.45 meV for the 4-wire,
the calculated results are 2.5 meV, 0.15 meV and
0.82 meV for the 1-, 2- and 4-wires, respectively.
Also the oscillation in the direction of the easy axis
from positive (+51° in the calculation and 43° in
the experiment) to negative angles for the 2- and 4-
wires (—19° and —40° as compared to about —60°
experimentally) is reproduced. Although there is
no perfect quantitative agreement (which cannot
be expected e.g. due to the different terrace-width),
we nevertheless assume that the calculation cap-
tures the essential physical mechanism that lies
behind the oscillations observed experimentally.
Therefore, we will now use our calculations to elu-
cidate this mechanisms at least tentatively.

Employing our ab initio calculations we can ana-
lyze the orbital moments of the different strands of
the n-wires as a function of the spin-quantization
axis individually. Looking at the orbital moments
of the different strands in the n-chains (Fig. 3) we
find for n = 2 — 5 again similarities like we found
for the spin moments (table 1). The step-edge atom
and the innermost strand of the wire behave very
similar in all these n-wires: The orbital moment at
the step-edge atom is the largest of all Co atoms
(due to the lower coordination as an atom at the
step-edge) and reaches its maximum at small pos-
itive angles 6 of the direction of the spin quantiza-
tion axis. At this angle, the atoms of the innermost
strand of the wires have the smallest orbital mo-
ment as a function of the angle 6, and their average
moment is smaller (around 0.12u 5 as compared to
about 0.16up for the step-edge atom). The aver-
age orbital moment of the other strands (for the 3-
to 6-wires) are similar to the one of the innermost
strand, since the coordination number is also iden-
tical, but — in contrast — it reaches its maximum
at a similar f-value as the step-edge atom.

When we characterize the individual strands ¢
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Fig. 3. Orbital moments of the different strands of Co
n-chains on Pt(664). The orbital moment of the strand
at the step-edge is indicated by the thick full line, the
orbital moments of the innermost strand are connected by
a thick broken line. Moments of the strands in-between are
connected by thin dotted lines. The insets show the surface
of the Pt substrate with Pt atoms as empty circles and Co
chains in color.

of an n-wire by their nearest neighbors, we iden-
tify four groups: the step-edge atom (¢ = 1) which
has seven nearest neighbors of which two (n =
1) or four (n > 1) are Co atoms, the atoms of
the innermost strand (i = n > 1) which have
nine nearest neighbors of which four are Co, and
the other strands (n > ¢ > 1), where the atoms
also have nine nearest neighbors, but now six of
them are Co (cf. Fig. 1). From Fig. 3 we see, that
each of these four groups shows a characteristic be-
havior of the orbital moment as a function of 6.
Let us look at the potential that acts on the elec-
trons in an atom of a given strand: in all cases
they will experience a potential from two neigh-



boring Co atoms of the same strand, and from the
lower-lying three Pt nearest neighbors. Left and
right of the strand, we can find either two Pt, or
two Co atoms or vacuum. So we characterize our
four groups according to the neighboring strands
as (Pt:Vac), (Co:Vac), (Pt:Co) and (Co:Co). As-
suming that the Pt-potential is strong it will — in
the spirit of Ref. [10] — favor an in-plane magne-
tization (or at least a large in-plane orbital mo-
ment at the neighboring Co atoms). The smaller
Co atoms, which are spaced by the large Pt lattice
constant, produce a weaker potential that favors
a large out-of-plane orbital moment (like it is ob-
served in a Co monolayer on Pt(111)). Thus, we
can find a natural explanation of the variation of
the orbital moment observed in Fig. 3.

We can now employ a simple model to relate
these variations in orbital moments to the magne-
tocrystalline anisotropy energy. Suppose, that the
MAE (AE) can be written as a sum of contribu-
tions of the different strands ¢ in the wire: AE =
Yo &S; - AL;. Here, & is the spin-orbit coupling
constant of the atoms of strand ¢ (which we can
assume to be constant for all n and i), S; are the
spin moments (cf. Table 1) and AL; is the or-
bital moment anisotropy (OMA). For a monowire,
the OMA and the MAE correspond nicely: where
the orbital moment is highest, the energy has its
minimum. For a double-wire, the contributions of
the two strands almost cancel each other, so that
the average OMA is very small (cf. Fig. 2), there-
fore also the MAE is extremely small. Indeed, we
find that the MAE curve has two shallow min-
ima and it seems that it is the contribution of the
step-edge atom that finally makes the minimum
at a small negative angle slightly deeper than the
minimum at larger positive ones. (In this case the
shape anisotropy can not be neglected and favors
even larger angles). When the number of strands
is larger than two, the innermost strand and the
step-edge strand still compensate each other, but
the contribution of the remaining strands gives now
rise to a larger MAE and favors an easy axis at
negative values of . Interestingly, in the case of
a b-chain, the easy axis turns once more towards
positive angles. At larger chain width it is difficult
to compare with experimental data, since our ter-
races are 33% narrower than in the experiment.

4. Summary

We presented ab initio calculations of Co chains
of different width deposited on a stepped Pt sur-
face. In agreement with experimental observations
the easy axis oscillates as a function of chain
thickness around the terrace normal and the MAE
shows a non-monotonic behavior. We attribute
these findings to the individual contributions of
the Co chains to the MAE and the total orbital
moment. Depending on the position of the Co
chain (at the step-edge or in the terrace), these
contributions can be very different and cancel
each other, resulting in a complex behavior of the
magnetic properties.
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