000000531 001__ 531
000000531 005__ 20230426083002.0
000000531 0247_ $$2DOI$$a10.1103/PhysRevB.78.054446
000000531 0247_ $$2WOS$$aWOS:000259368200102
000000531 0247_ $$2Handle$$a2128/11089
000000531 037__ $$aPreJuSER-531
000000531 041__ $$aeng
000000531 082__ $$a530
000000531 084__ $$2WoS$$aPhysics, Condensed Matter
000000531 1001_ $$0P:(DE-Juel1)130823$$aMavropoulos, Ph.$$b0$$uFZJ
000000531 245__ $$aSpin injection from Fe into Si(001): Ab initio calculations and role of the Si complex band structure
000000531 260__ $$aCollege Park, Md.$$bAPS$$c2008
000000531 300__ $$a054446
000000531 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000000531 3367_ $$2DataCite$$aOutput Types/Journal article
000000531 3367_ $$00$$2EndNote$$aJournal Article
000000531 3367_ $$2BibTeX$$aARTICLE
000000531 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000000531 3367_ $$2DRIVER$$aarticle
000000531 440_0 $$04919$$aPhysical Review B$$v78$$x1098-0121
000000531 500__ $$aRecord converted from VDB: 12.11.2012
000000531 520__ $$aWe study the possibility of spin injection from Fe into Si(001), using the Schottky barrier at the Fe/Si contact as tunneling barrier. Our calculations are based on density-functional theory for the description of the electronic structure and on a Landauer-Buttiker approach for the current. The current-carrying states correspond to the six conduction-band minima (pockets) of Si, which, when projected on the (001) surface Brillouin zone (SBZ), form five conductance hot spots: one at the SBZ center and four symmetric satellites. The satellites yield a current polarization of about 50%, while the SBZ center can, under very low gate voltage, yield up to almost 100%, showing a zero-gate anomaly. This extremely high polarization is traced back to the symmetry mismatch of the minority-spin Fe wave functions to the conduction-band wave functions of Si at the SBZ center. The tunneling current is determined by the complex band structure of Si in the [001] direction, which shows qualitative differences compared to that of direct-gap semiconductors. Depending on the Fermi level position and Schottky barrier thickness, the complex band structure can cause the contribution of the satellites to be orders of magnitude higher or lower than the central contribution. Thus, by appropriate tuning of the interface properties, there is a possibility to cut off the satellite contribution and to reach high injection efficiency. Also, we find that a moderate strain of 0.5% along the [001] direction is sufficient to lift the degeneracy of the pockets so that only states at the zone center can carry current.
000000531 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000000531 542__ $$2Crossref$$i2008-08-27$$uhttp://link.aps.org/licenses/aps-default-license
000000531 588__ $$aDataset connected to Web of Science
000000531 650_7 $$2WoSType$$aJ
000000531 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.78.054446$$bAmerican Physical Society (APS)$$d2008-08-27$$n5$$p054446$$tPhysical Review B$$v78$$x1098-0121$$y2008
000000531 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.78.054446$$gVol. 78, p. 054446$$n5$$p054446$$q78<054446$$tPhysical review / B$$v78$$x1098-0121$$y2008
000000531 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.78.054446
000000531 8564_ $$uhttps://juser.fz-juelich.de/record/531/files/PhysRevB.78.054446.pdf$$yOpenAccess
000000531 8564_ $$uhttps://juser.fz-juelich.de/record/531/files/PhysRevB.78.054446.gif?subformat=icon$$xicon$$yOpenAccess
000000531 8564_ $$uhttps://juser.fz-juelich.de/record/531/files/PhysRevB.78.054446.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000000531 8564_ $$uhttps://juser.fz-juelich.de/record/531/files/PhysRevB.78.054446.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000000531 8564_ $$uhttps://juser.fz-juelich.de/record/531/files/PhysRevB.78.054446.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000000531 909CO $$ooai:juser.fz-juelich.de:531$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000000531 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009
000000531 9141_ $$y2008
000000531 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000000531 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000000531 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000000531 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000000531 9201_ $$0I:(DE-Juel1)VDB781$$d31.12.2010$$gIFF$$kIFF-1$$lQuanten-Theorie der Materialien$$x0
000000531 970__ $$aVDB:(DE-Juel1)101125
000000531 980__ $$aVDB
000000531 980__ $$aConvertedRecord
000000531 980__ $$ajournal
000000531 980__ $$aI:(DE-Juel1)IAS-1-20090406
000000531 980__ $$aI:(DE-Juel1)PGI-1-20110106
000000531 980__ $$aUNRESTRICTED
000000531 9801_ $$aFullTexts
000000531 981__ $$aI:(DE-Juel1)PGI-1-20110106
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.102730
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.62.R4790
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.62.R16267
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.184420
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1449530
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1758305
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.056601
000000531 999C5 $$1A. Sinsarp$$2Crossref$$9-- missing cx lookup --$$a10.1143/JJAP.46.L4$$pL4 -$$tJpn. J. Appl. Phys., Part 2$$v46$$y2007
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys543
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature05803
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2767198
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.177209
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.165331
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2817747
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys673
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2176317
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2891503
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.026602
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.55.10074
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/14/11/304
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.125104
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/1/49/009
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.65.241306
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/16/26/001
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.141.789
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/15/5/301
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.196101
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.066804
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.66.014445
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.49.13231
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.66.024416
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.092401
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2431702
000000531 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.046602