001     53183
005     20180211182428.0
024 7 _ |2 DOI
|a 10.1016/j.susc.2006.05.031
024 7 _ |2 WOS
|a WOS:000239317200012
037 _ _ |a PreJuSER-53183
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-Juel1)VDB9873
|a Balster, T.
|b 0
|u FZJ
245 _ _ |a Strong dispersion of the surface optical phonon of silicon carbide in the near vicinity of the surface Brillouin zone center
260 _ _ |a Amsterdam
|b Elsevier
|c 2006
300 _ _ |a 2886 - 2893
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 5673
|a Surface Science
|v 600
|x 0039-6028
|y 14
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The surface optical or Fuchs-Kliewer phonons of the (0 0 1) surface of 3C-SiC and the Si-terminated (0 0 0 1) surfaces of 4H- and 6H-SiC have been investigated with high resolution electron energy loss spectroscopy (HREELS). For each of the SiC polytypes the frequency of the surface optical phonon changes with surface reconstruction, indicating subtle differences in the static polarization at differently reconstructed surfaces. Due to their anisotropy, hexagonal surfaces exhibit a second, much weaker Fuchs-Kliewer mode. For all surfaces under examination, a linear dispersion of the Fuchs-Kliewer mode frequency has been found for wave vectors close to the Gamma-point. This dispersion can be explained by dynamical dipole coupling between atomic oscillators at the surface of the highly polar silicon carbide. (c) 2006 Elsevier B.V. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK414
|2 G:(DE-HGF)
|a Kondensierte Materie
|c P54
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a electron energy loss spectroscopy
653 2 0 |2 Author
|a surface optical phonon
653 2 0 |2 Author
|a silicon carbide
700 1 _ |0 P:(DE-Juel1)128791
|a Tautz, F. S.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB34072
|a Polyakov, V. M.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB5414
|a Ibach, H.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB34073
|a Sloboshanin, S.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB63917
|a Öttking, R.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB24978
|a Schaefer, J. A.
|b 6
|u FZJ
773 _ _ |0 PERI:(DE-600)1479030-0
|a 10.1016/j.susc.2006.05.031
|g Vol. 600, p. 2886 - 2893
|p 2886 - 2893
|q 600<2886 - 2893
|t Surface science
|v 600
|x 0039-6028
|y 2006
856 7 _ |u http://dx.doi.org/10.1016/j.susc.2006.05.031
909 C O |o oai:juser.fz-juelich.de:53183
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128791
|a Forschungszentrum Jülich
|b 1
|k FZJ
913 1 _ |0 G:(DE-Juel1)FUEK414
|b Materie
|k P54
|l Kondensierte Materie
|v Kondensierte Materie
|x 0
|z entfällt bis 2009
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)VDB43
|d 31.12.2006
|g ISG
|k ISG-3
|l Institut für Grenzflächen und Vakuumtechnologien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|g JARA
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 1
970 _ _ |a VDB:(DE-Juel1)83640
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21