000053215 001__ 53215
000053215 005__ 20180211173220.0
000053215 0247_ $$2DOI$$a10.1088/0957-4484/18/4/044018
000053215 0247_ $$2WOS$$aWOS:000243841000019
000053215 037__ $$aPreJuSER-53215
000053215 041__ $$aeng
000053215 082__ $$a530
000053215 084__ $$2WoS$$aNanoscience & Nanotechnology
000053215 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000053215 084__ $$2WoS$$aPhysics, Applied
000053215 1001_ $$0P:(DE-Juel1)VDB2436$$aLi, Z.$$b0$$uFZJ
000053215 245__ $$aConductance of redox-active single molecular junctions: an electrochemical approach
000053215 260__ $$aBristol$$bIOP Publ.$$c2007
000053215 300__ $$a044018
000053215 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000053215 3367_ $$2DataCite$$aOutput Types/Journal article
000053215 3367_ $$00$$2EndNote$$aJournal Article
000053215 3367_ $$2BibTeX$$aARTICLE
000053215 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000053215 3367_ $$2DRIVER$$aarticle
000053215 440_0 $$04475$$aNanotechnology$$v18$$x0957-4484$$y4
000053215 500__ $$aRecord converted from VDB: 12.11.2012
000053215 520__ $$aThe conductance of molecular junctions formed of N, N'-bis(n-thioalkyl)4,4'-bipyridinium bromides or alkanedithiols between a gold (Au) scanning tunnelling microscope tip and a Au(111)-(1x1) electrode has been studied at electrified solid/liquid interfaces. A statistical analysis based on large sets of individual current - distance traces was applied to obtain the electrical conductance of single junctions. The one-electron reduction of the viologen moiety from the dication V2+ to the radical cation state V+. gives rise to a 50% increase of the junction conductance. Increasing the length of the alkyl spacer units leads to a tunnelling decay constant ss(CH2) = 5.9-6.1 nm(-1). This value is significantly lower than ss(CH2) = 8.2 nm(-1) estimated for molecular junctions of alkanedithiols. The difference is attributed to conformational changes within the two junctions. The contact conductance was estimated to 10 mu S.
000053215 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000053215 588__ $$aDataset connected to Web of Science
000053215 650_7 $$2WoSType$$aJ
000053215 7001_ $$0P:(DE-Juel1)VDB45469$$aPobelov, I.$$b1$$uFZJ
000053215 7001_ $$0P:(DE-Juel1)VDB35518$$aHan, B.$$b2$$uFZJ
000053215 7001_ $$0P:(DE-Juel1)VDB9859$$aWandlowski, Th.$$b3$$uFZJ
000053215 7001_ $$0P:(DE-HGF)0$$aBlaszcyk, A.$$b4
000053215 7001_ $$0P:(DE-HGF)0$$aMayor, M.$$b5
000053215 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/0957-4484/18/4/044018$$gVol. 18, p. 044018$$p044018$$q18<044018$$tNanotechnology$$v18$$x0957-4484$$y2007
000053215 8567_ $$uhttp://dx.doi.org/10.1088/0957-4484/18/4/044018
000053215 909CO $$ooai:juser.fz-juelich.de:53215$$pVDB
000053215 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000053215 9141_ $$y2007
000053215 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000053215 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000053215 9201_ $$0I:(DE-Juel1)VDB801$$d31.12.2010$$gIBN$$kIBN-3$$lGrenz- und Oberflächen$$x0
000053215 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000053215 970__ $$aVDB:(DE-Juel1)83675
000053215 980__ $$aVDB
000053215 980__ $$aConvertedRecord
000053215 980__ $$ajournal
000053215 980__ $$aI:(DE-Juel1)VDB381
000053215 980__ $$aI:(DE-Juel1)PGI-3-20110106
000053215 980__ $$aI:(DE-82)080009_20140620
000053215 980__ $$aUNRESTRICTED
000053215 981__ $$aI:(DE-Juel1)PGI-3-20110106
000053215 981__ $$aI:(DE-Juel1)VDB881