001     53215
005     20180211173220.0
024 7 _ |2 DOI
|a 10.1088/0957-4484/18/4/044018
024 7 _ |2 WOS
|a WOS:000243841000019
037 _ _ |a PreJuSER-53215
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Li, Z.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB2436
245 _ _ |a Conductance of redox-active single molecular junctions: an electrochemical approach
260 _ _ |a Bristol
|b IOP Publ.
|c 2007
300 _ _ |a 044018
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Nanotechnology
|x 0957-4484
|0 4475
|y 4
|v 18
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The conductance of molecular junctions formed of N, N'-bis(n-thioalkyl)4,4'-bipyridinium bromides or alkanedithiols between a gold (Au) scanning tunnelling microscope tip and a Au(111)-(1x1) electrode has been studied at electrified solid/liquid interfaces. A statistical analysis based on large sets of individual current - distance traces was applied to obtain the electrical conductance of single junctions. The one-electron reduction of the viologen moiety from the dication V2+ to the radical cation state V+. gives rise to a 50% increase of the junction conductance. Increasing the length of the alkyl spacer units leads to a tunnelling decay constant ss(CH2) = 5.9-6.1 nm(-1). This value is significantly lower than ss(CH2) = 8.2 nm(-1) estimated for molecular junctions of alkanedithiols. The difference is attributed to conformational changes within the two junctions. The contact conductance was estimated to 10 mu S.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Pobelov, I.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB45469
700 1 _ |a Han, B.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB35518
700 1 _ |a Wandlowski, Th.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB9859
700 1 _ |a Blaszcyk, A.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Mayor, M.
|b 5
|0 P:(DE-HGF)0
773 _ _ |a 10.1088/0957-4484/18/4/044018
|g Vol. 18, p. 044018
|p 044018
|q 18<044018
|0 PERI:(DE-600)1362365-5
|t Nanotechnology
|v 18
|y 2007
|x 0957-4484
856 7 _ |u http://dx.doi.org/10.1088/0957-4484/18/4/044018
909 C O |o oai:juser.fz-juelich.de:53215
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 14.09.2008
|g CNI
|k CNI
|l Center of Nanoelectronic Systems for Information Technology
|0 I:(DE-Juel1)VDB381
|x 1
|z 381
920 1 _ |d 31.12.2010
|g IBN
|k IBN-3
|l Grenz- und Oberflächen
|0 I:(DE-Juel1)VDB801
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)83675
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21