000053334 001__ 53334
000053334 005__ 20180211163727.0
000053334 0247_ $$2DOI$$a10.1007/s00339-007-3926-8
000053334 0247_ $$2WOS$$aWOS:000244950900015
000053334 0247_ $$2ISSN$$a0947-8396
000053334 037__ $$aPreJuSER-53334
000053334 041__ $$aeng
000053334 082__ $$a530
000053334 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000053334 084__ $$2WoS$$aPhysics, Applied
000053334 1001_ $$0P:(DE-Juel1)VDB56696$$aKazempoor, M.$$b0$$uFZJ
000053334 245__ $$aComplex Formation and Proton Transfer between Formic Acid and Water Adsorbed on Au(111) Surfaces under UHV Conditions
000053334 260__ $$aBerlin$$bSpringer$$c2007
000053334 300__ $$a435 - 441
000053334 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000053334 3367_ $$2DataCite$$aOutput Types/Journal article
000053334 3367_ $$00$$2EndNote$$aJournal Article
000053334 3367_ $$2BibTeX$$aARTICLE
000053334 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000053334 3367_ $$2DRIVER$$aarticle
000053334 440_0 $$0560$$aApplied Physics A$$v87$$x0947-8396$$y3
000053334 500__ $$aRecord converted from VDB: 12.11.2012
000053334 520__ $$aThe coadsorption of formic acid and water on Au(111) surfaces has been investigated by means of vibrational and photoelectron spectroscopy (HREELS, XPS). Formic acid adsorbs at 90 K molecularly with vibrational modes characteristic for flat lying zig-zag chains in the mono- and multilayer regime, like in solid formic acid. Annealing results in a complete desorption at 190 K. Sequential adsorption of formic acid and water at 90 K shows no significant chemical interaction. Upon annealing the coadsorbed layer to 140 K a hydrogen-bonded cyclic complex of formic acid with one water molecule could be identified using isotopically labelled adsorbates (D2O, (HCOOD)-C-13). Upon further annealing this complex decomposes leaving molecularly adsorbed formic acid on the surface at 160 K, accompanied by a proton exchange between formic acid and water.
000053334 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000053334 588__ $$aDataset connected to Web of Science
000053334 650_7 $$2WoSType$$aJ
000053334 7001_ $$0P:(DE-Juel1)128784$$aPirug, G.$$b1$$uFZJ
000053334 773__ $$0PERI:(DE-600)1398311-8$$a10.1007/s00339-007-3926-8$$gVol. 87, p. 435 - 441$$p435 - 441$$q87<435 - 441$$tApplied physics / A$$v87$$x0947-8396$$y2007
000053334 8567_ $$uhttp://dx.doi.org/10.1007/s00339-007-3926-8
000053334 909CO $$ooai:juser.fz-juelich.de:53334$$pVDB
000053334 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000053334 9141_ $$y2007
000053334 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000053334 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000053334 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000053334 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000053334 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000053334 9201_ $$0I:(DE-Juel1)VDB801$$d31.12.2010$$gIBN$$kIBN-3$$lGrenz- und Oberflächen$$x0
000053334 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000053334 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000053334 970__ $$aVDB:(DE-Juel1)83822
000053334 980__ $$aVDB
000053334 980__ $$aConvertedRecord
000053334 980__ $$ajournal
000053334 980__ $$aI:(DE-Juel1)PGI-3-20110106
000053334 980__ $$aI:(DE-Juel1)VDB381
000053334 980__ $$aI:(DE-82)080009_20140620
000053334 980__ $$aUNRESTRICTED
000053334 981__ $$aI:(DE-Juel1)PGI-3-20110106
000053334 981__ $$aI:(DE-Juel1)VDB381
000053334 981__ $$aI:(DE-Juel1)VDB881