001     53334
005     20180211163727.0
024 7 _ |2 DOI
|a 10.1007/s00339-007-3926-8
024 7 _ |2 WOS
|a WOS:000244950900015
024 7 _ |2 ISSN
|a 0947-8396
037 _ _ |a PreJuSER-53334
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Kazempoor, M.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB56696
245 _ _ |a Complex Formation and Proton Transfer between Formic Acid and Water Adsorbed on Au(111) Surfaces under UHV Conditions
260 _ _ |c 2007
|a Berlin
|b Springer
300 _ _ |a 435 - 441
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Applied Physics A
|x 0947-8396
|0 560
|y 3
|v 87
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The coadsorption of formic acid and water on Au(111) surfaces has been investigated by means of vibrational and photoelectron spectroscopy (HREELS, XPS). Formic acid adsorbs at 90 K molecularly with vibrational modes characteristic for flat lying zig-zag chains in the mono- and multilayer regime, like in solid formic acid. Annealing results in a complete desorption at 190 K. Sequential adsorption of formic acid and water at 90 K shows no significant chemical interaction. Upon annealing the coadsorbed layer to 140 K a hydrogen-bonded cyclic complex of formic acid with one water molecule could be identified using isotopically labelled adsorbates (D2O, (HCOOD)-C-13). Upon further annealing this complex decomposes leaving molecularly adsorbed formic acid on the surface at 160 K, accompanied by a proton exchange between formic acid and water.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Pirug, G.
|b 1
|u FZJ
|0 P:(DE-Juel1)128784
773 _ _ |0 PERI:(DE-600)1398311-8
|a 10.1007/s00339-007-3926-8
|g Vol. 87, p. 435 - 441
|p 435 - 441
|q 87<435 - 441
|t Applied physics / A
|v 87
|x 0947-8396
|y 2007
856 7 _ |u http://dx.doi.org/10.1007/s00339-007-3926-8
909 C O |o oai:juser.fz-juelich.de:53334
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2007
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |d 31.12.2010
|g IBN
|k IBN-3
|l Grenz- und Oberflächen
|0 I:(DE-Juel1)VDB801
|x 0
920 1 _ |d 14.09.2008
|g CNI
|k CNI
|l Center of Nanoelectronic Systems for Information Technology
|0 I:(DE-Juel1)VDB381
|x 1
|z 381
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)83822
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB381
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21