% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Noguchi:53342,
author = {Noguchi, H. and Gompper, G.},
title = {{D}ynamics of {V}esicle {S}elf-{A}ssembly and
{D}issolution},
journal = {The journal of chemical physics},
volume = {125},
issn = {0021-9606},
address = {Melville, NY},
publisher = {American Institute of Physics},
reportid = {PreJuSER-53342},
pages = {164908},
year = {2006},
note = {Record converted from VDB: 12.11.2012},
abstract = {The dynamics of membranes is studied on the basis of a
particle-based meshless surface model, which was introduced
earlier [Phys. Rev. E 73, 021903 (2006)]. The model
describes fluid membranes with bending energy and-in the
case of membranes with boundaries-line tension. The effects
of hydrodynamic interactions are investigated by comparing
Brownian dynamics with a particle-based mesoscale solvent
simulation (multiparticle collision dynamics). Particles
self-assemble into vesicles via disk-shaped membrane
patches. The time evolution of assembly is found to consist
of three steps: particle assembly into discoidal clusters,
aggregation of clusters into larger membrane patches, and
finally vesicle formation. The time dependence of the
cluster distribution and the mean cluster size is evaluated
and compared with the predictions of Smoluchowski rate
equations. On the other hand, when the line tension is
suddenly decreased (or the temperature is increased),
vesicles dissolve via pore formation in the membrane.
Hydrodynamic interactions are found to speed up the dynamics
in both cases. Furthermore, hydrodynamics makes vesicle more
spherical in the membrane-closure process.},
keywords = {Computer Simulation / Micelles / Models, Molecular /
Solutions: chemistry / Viscosity / Micelles (NLM Chemicals)
/ Solutions (NLM Chemicals) / J (WoSType)},
cin = {IFF-TH-II},
ddc = {540},
cid = {I:(DE-Juel1)VDB31},
pnm = {Kondensierte Materie},
pid = {G:(DE-Juel1)FUEK414},
shelfmark = {Physics, Atomic, Molecular $\&$ Chemical},
typ = {PUB:(DE-HGF)16},
pubmed = {pmid:17092140},
UT = {WOS:000241722000086},
doi = {10.1063/1.2358983},
url = {https://juser.fz-juelich.de/record/53342},
}