000053355 001__ 53355
000053355 005__ 20200423204358.0
000053355 0247_ $$2DOI$$a10.1029/2006WR005097
000053355 0247_ $$2WOS$$aWOS:000241871400002
000053355 0247_ $$2Handle$$a2128/20176
000053355 037__ $$aPreJuSER-53355
000053355 041__ $$aeng
000053355 082__ $$a550
000053355 084__ $$2WoS$$aEnvironmental Sciences
000053355 084__ $$2WoS$$aLimnology
000053355 084__ $$2WoS$$aWater Resources
000053355 1001_ $$0P:(DE-Juel1)VDB54976$$aLambot, S.$$b0$$uFZJ
000053355 245__ $$aAnalysis of air-launched ground-penetrating radar techniques to measure the soil surface water content
000053355 260__ $$aWashington, DC$$bAGU$$c2006
000053355 300__ $$aW11403
000053355 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000053355 3367_ $$2DataCite$$aOutput Types/Journal article
000053355 3367_ $$00$$2EndNote$$aJournal Article
000053355 3367_ $$2BibTeX$$aARTICLE
000053355 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000053355 3367_ $$2DRIVER$$aarticle
000053355 440_0 $$05958$$aWater Resources Research$$v42$$x0043-1397
000053355 500__ $$aRecord converted from VDB: 12.11.2012
000053355 520__ $$aWe analyze the common surface reflection and full-wave inversion methods to retrieve the soil surface dielectric permittivity and correlated water content from air-launched ground-penetrating radar (GPR) measurements. In the full-wave approach, antenna effects are filtered out from the raw radar data in the frequency domain, and full-wave inversion is performed in the time domain, on a time window focused on the surface reflection. Synthetic experiments are performed to investigate the most critical hypotheses on which both techniques rely, namely, the negligible effects of the soil electric conductivity (s) and layering. In the frequency range 1-2 GHz we show that for sigma>0.1 Sm-1, significant errors are made on the estimated parameters, e. g., an absolute error of 0.10 in water content may be observed for sigma=1 Sm-1. This threshold is more stringent with decreasing frequency. Contrasting surface layering may proportionally lead to significant errors when the thickness of the surface layer is close to one fourth the wavelength in the medium, which corresponds to the depth resolution. Absolute errors may be >0.10 in water content for large contrasts. Yet we show that full-wave inversion presents valuable advantages compared to the common surface reflection method. First, filtering antenna effects may prevent absolute errors >0.04 in water content, depending of the antenna height. Second, the critical reference measurements above a perfect electric conductor (PEC) are not required, and the height of the antenna does not need to be known a priori. This averts absolute errors of 0.02-0.09 in water content when antenna height differences of 1-5 cm occur between the soil and the PEC. A laboratory experiment is finally presented to analyze the stability of the estimates with respect to actual measurement and modeling errors. While the conditions were particularly well suited for applying the common reflection method, better results were obtained using full-wave inversion.
000053355 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000053355 588__ $$aDataset connected to Web of Science
000053355 650_7 $$2WoSType$$aJ
000053355 7001_ $$0P:(DE-Juel1)VDB17057$$aWeihermüller, L.$$b1$$uFZJ
000053355 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J. A.$$b2$$uFZJ
000053355 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b3$$uFZJ
000053355 7001_ $$0P:(DE-Juel1)VDB1689$$aVanclooster, M.$$b4$$uFZJ
000053355 7001_ $$0P:(DE-HGF)0$$aSlob, E. C.$$b5
000053355 773__ $$0PERI:(DE-600)2029553-4$$a10.1029/2006WR005097$$gVol. 42, p. W11403$$pW11403$$q42<W11403$$tWater resources research$$v42$$x0043-1397$$y2006
000053355 8567_ $$uhttp://dx.doi.org/10.1029/2006WR005097
000053355 8564_ $$uhttps://juser.fz-juelich.de/record/53355/files/Lambot_et_al-2006-Water_Resources_Research.pdf$$yOpenAccess
000053355 8564_ $$uhttps://juser.fz-juelich.de/record/53355/files/Lambot_et_al-2006-Water_Resources_Research.gif?subformat=icon$$xicon$$yOpenAccess
000053355 8564_ $$uhttps://juser.fz-juelich.de/record/53355/files/Lambot_et_al-2006-Water_Resources_Research.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000053355 8564_ $$uhttps://juser.fz-juelich.de/record/53355/files/Lambot_et_al-2006-Water_Resources_Research.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000053355 8564_ $$uhttps://juser.fz-juelich.de/record/53355/files/Lambot_et_al-2006-Water_Resources_Research.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000053355 909CO $$ooai:juser.fz-juelich.de:53355$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000053355 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000053355 9141_ $$y2006
000053355 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000053355 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000053355 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000053355 9201_ $$0I:(DE-Juel1)VDB50$$d31.12.2006$$gICG$$kICG-IV$$lAgrosphäre$$x0
000053355 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x1
000053355 970__ $$aVDB:(DE-Juel1)83843
000053355 980__ $$aVDB
000053355 980__ $$aConvertedRecord
000053355 980__ $$ajournal
000053355 980__ $$aI:(DE-Juel1)IBG-3-20101118
000053355 980__ $$aI:(DE-82)080011_20140620
000053355 980__ $$aUNRESTRICTED
000053355 9801_ $$aFullTexts
000053355 981__ $$aI:(DE-Juel1)IBG-3-20101118
000053355 981__ $$aI:(DE-Juel1)VDB1047