000053460 001__ 53460
000053460 005__ 20180211175914.0
000053460 0247_ $$2pmid$$apmid:17277095
000053460 0247_ $$2pmc$$apmc:PMC1851814
000053460 0247_ $$2DOI$$a10.1104/pp.106.094631
000053460 0247_ $$2WOS$$aWOS:000245781000033
000053460 037__ $$aPreJuSER-53460
000053460 041__ $$aeng
000053460 082__ $$a580
000053460 084__ $$2WoS$$aPlant Sciences
000053460 1001_ $$0P:(DE-HGF)0$$aBoonman, A.$$b0
000053460 245__ $$aCytokinin import rate as a signal for photosynthetic acclimation to canopy light gradients
000053460 260__ $$aRockville, Md.: Soc.$$bJSTOR$$c2007
000053460 300__ $$a1841 - 1852
000053460 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000053460 3367_ $$2DataCite$$aOutput Types/Journal article
000053460 3367_ $$00$$2EndNote$$aJournal Article
000053460 3367_ $$2BibTeX$$aARTICLE
000053460 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000053460 3367_ $$2DRIVER$$aarticle
000053460 440_0 $$04987$$aPlant Physiology$$v143$$x0032-0889
000053460 500__ $$aRecord converted from VDB: 12.11.2012
000053460 520__ $$aPlants growing in dense canopies are exposed to vertical light gradients and show photosynthetic acclimation at the whole-plant level, resulting in efficient photosynthetic carbon gain. We studied the role of cytokinins transported through the transpiration stream as one of probably multiple signals for photosynthetic acclimation to light gradients using both tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana). We show that substantial variation in leaf transpiration parallels the light gradient in tobacco canopies and experimental reduction of the transpiration rate of a leaf, independent of light, is sufficient to reduce photosynthetic capacity in both species, as well as transcript levels of the small subunit of Rubisco (rbcS) gene in Arabidopsis. Mass spectrometric analysis of xylem sap collected from intact, transpiring tobacco plants revealed that shaded leaves import less cytokinin than leaves exposed to high light. In Arabidopsis, reduced transpiration rate of a leaf in the light is associated with lower cytokinin concentrations, including the bioactive trans-zeatin and trans-zeatin riboside, as well as reduced expression of the cytokinin-responsive genes ARR7 and ARR16. External application of cytokinin to shaded leaves rescued multiple shade effects, including rbcS transcript levels in both species, as did locally induced cytokinin overproduction in transgenic tobacco plants. From these data, we conclude that light gradients over the foliage of a plant result in reduced cytokinin activity in shaded leaves as a consequence of reduced import through the xylem and that cytokinin is involved in the regulation of whole-plant photosynthetic acclimation to light gradients in canopies.
000053460 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000053460 588__ $$aDataset connected to Web of Science, Pubmed
000053460 650_2 $$2MeSH$$aAdaptation, Physiological
000053460 650_2 $$2MeSH$$aArabidopsis: metabolism
000053460 650_2 $$2MeSH$$aArabidopsis: physiology
000053460 650_2 $$2MeSH$$aBase Sequence
000053460 650_2 $$2MeSH$$aBiological Transport
000053460 650_2 $$2MeSH$$aChromatography, Liquid
000053460 650_2 $$2MeSH$$aCytokinins: metabolism
000053460 650_2 $$2MeSH$$aDNA Primers
000053460 650_2 $$2MeSH$$aLight
000053460 650_2 $$2MeSH$$aPhotosynthesis
000053460 650_2 $$2MeSH$$aReverse Transcriptase Polymerase Chain Reaction
000053460 650_2 $$2MeSH$$aTandem Mass Spectrometry
000053460 650_2 $$2MeSH$$aTobacco: metabolism
000053460 650_2 $$2MeSH$$aTobacco: physiology
000053460 650_7 $$00$$2NLM Chemicals$$aCytokinins
000053460 650_7 $$00$$2NLM Chemicals$$aDNA Primers
000053460 650_7 $$2WoSType$$aJ
000053460 7001_ $$0P:(DE-HGF)0$$aPrinsen, E.$$b1
000053460 7001_ $$0P:(DE-Juel1)VDB461$$aGilmer, F.$$b2$$uFZJ
000053460 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b3$$uFZJ
000053460 7001_ $$0P:(DE-HGF)0$$aPeeters, A. J. M.$$b4
000053460 7001_ $$0P:(DE-HGF)0$$aVoesenek, L.A.C.J.$$b5
000053460 7001_ $$0P:(DE-HGF)0$$aPons, T. L.$$b6
000053460 773__ $$0PERI:(DE-600)2004346-6$$a10.1104/pp.106.094631$$gVol. 143, p. 1841 - 1852$$p1841 - 1852$$q143<1841 - 1852$$tPlant physiology$$v143$$x0032-0889$$y2007
000053460 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC1851814
000053460 909CO $$ooai:juser.fz-juelich.de:53460$$pVDB
000053460 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000053460 9141_ $$y2007
000053460 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000053460 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000053460 970__ $$aVDB:(DE-Juel1)84000
000053460 980__ $$aVDB
000053460 980__ $$aConvertedRecord
000053460 980__ $$ajournal
000053460 980__ $$aI:(DE-Juel1)IBG-2-20101118
000053460 980__ $$aUNRESTRICTED
000053460 981__ $$aI:(DE-Juel1)IBG-2-20101118
000053460 981__ $$aI:(DE-Juel1)ICG-3-20090406