000053477 001__ 53477
000053477 005__ 20240709074213.0
000053477 0247_ $$2DOI$$a10.1007/s10874-006-9028-8
000053477 0247_ $$2WOS$$aWOS:000241797000002
000053477 037__ $$aPreJuSER-53477
000053477 041__ $$aeng
000053477 082__ $$a540
000053477 084__ $$2WoS$$aEnvironmental Sciences
000053477 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000053477 1001_ $$0P:(DE-HGF)0$$aTripathi, O. P.$$b0
000053477 245__ $$aHigh resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations
000053477 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2006
000053477 300__ $$a205 - 226
000053477 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000053477 3367_ $$2DataCite$$aOutput Types/Journal article
000053477 3367_ $$00$$2EndNote$$aJournal Article
000053477 3367_ $$2BibTeX$$aARTICLE
000053477 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000053477 3367_ $$2DRIVER$$aarticle
000053477 440_0 $$03073$$aJournal of Atmospheric Chemistry$$v55$$x0167-7764$$y3
000053477 500__ $$aRecord converted from VDB: 12.11.2012
000053477 520__ $$aSimulations of polar ozone losses were performed using the three-dimensional high-resolution (1 degrees x 1 degrees) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999-2000, 2001-2002, 2002-2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002-2003 reached around 35% at 475 K inside the vortex, as compared to more than 60% in 1999-2000. During 1999-2000, denitrification induces a maximum of about 23% extra ozone loss at 475 K as compared to 17% in 2002-2003. Unlike these two colder Arctic winters, the 2001-2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1 degrees x 1 degrees provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NOy for winters 1999-2000 and 2002-2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 x 10(-3) to 10(-2) cm(-3)) refines the agreement with in situ ozone, N2O and NOy levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections.
000053477 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000053477 588__ $$aDataset connected to Web of Science
000053477 650_7 $$2WoSType$$aJ
000053477 65320 $$2Author$$acomparison with observations
000053477 65320 $$2Author$$ahigh-resolution 3-D chemical transport model
000053477 65320 $$2Author$$aozone loss
000053477 65320 $$2Author$$astratospheric chemistry
000053477 65320 $$2Author$$apolar ozone
000053477 65320 $$2Author$$asensitivity tests
000053477 7001_ $$0P:(DE-HGF)0$$aGodin-Beekmann, S.$$b1
000053477 7001_ $$0P:(DE-HGF)0$$aPazmino, A.$$b2
000053477 7001_ $$0P:(DE-HGF)0$$aLefevree, F.$$b3
000053477 7001_ $$0P:(DE-HGF)0$$aMarchand, M.$$b4
000053477 7001_ $$0P:(DE-HGF)0$$aHauchecorne, A.$$b5
000053477 7001_ $$0P:(DE-HGF)0$$aGoutail, F.$$b6
000053477 7001_ $$0P:(DE-HGF)0$$aSchlager, H.$$b7
000053477 7001_ $$0P:(DE-HGF)0$$aVolk, C. M.$$b8
000053477 7001_ $$0P:(DE-HGF)0$$aJohnson, B.$$b9
000053477 7001_ $$0P:(DE-HGF)0$$aKönig-Langlo, G.$$b10
000053477 7001_ $$0P:(DE-HGF)0$$aBalestri, S.$$b11
000053477 7001_ $$0P:(DE-Juel1)129158$$aStroh, F.$$b12$$uFZJ
000053477 7001_ $$0P:(DE-HGF)0$$aBui, T. P.$$b13
000053477 7001_ $$0P:(DE-HGF)0$$aJost, H. J.$$b14
000053477 7001_ $$0P:(DE-HGF)0$$aDeshler, T.$$b15
000053477 7001_ $$0P:(DE-HGF)0$$avon der Gathen, P.$$b16
000053477 773__ $$0PERI:(DE-600)1475524-5$$a10.1007/s10874-006-9028-8$$gVol. 55, p. 205 - 226$$p205 - 226$$q55<205 - 226$$tJournal of atmospheric chemistry$$v55$$x0167-7764$$y2006
000053477 8567_ $$uhttp://dx.doi.org/10.1007/s10874-006-9028-8
000053477 909CO $$ooai:juser.fz-juelich.de:53477$$pVDB
000053477 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000053477 9141_ $$y2006
000053477 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000053477 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000053477 970__ $$aVDB:(DE-Juel1)84018
000053477 980__ $$aVDB
000053477 980__ $$aConvertedRecord
000053477 980__ $$ajournal
000053477 980__ $$aI:(DE-Juel1)IEK-7-20101013
000053477 980__ $$aUNRESTRICTED
000053477 981__ $$aI:(DE-Juel1)ICE-4-20101013
000053477 981__ $$aI:(DE-Juel1)IEK-7-20101013