000053568 001__ 53568 000053568 005__ 20180211173040.0 000053568 0247_ $$2DOI$$a10.1016/j.cpc.2006.08.007 000053568 0247_ $$2WOS$$aWOS:000243815300005 000053568 037__ $$aPreJuSER-53568 000053568 041__ $$aeng 000053568 082__ $$a004 000053568 084__ $$2WoS$$aComputer Science, Interdisciplinary Applications 000053568 084__ $$2WoS$$aPhysics, Mathematical 000053568 1001_ $$0P:(DE-HGF)0$$aDe Raedt, K.$$b0 000053568 245__ $$aMassively parallel quantum computer simulator 000053568 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2007 000053568 300__ $$a127 - 136 000053568 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000053568 3367_ $$2DataCite$$aOutput Types/Journal article 000053568 3367_ $$00$$2EndNote$$aJournal Article 000053568 3367_ $$2BibTeX$$aARTICLE 000053568 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000053568 3367_ $$2DRIVER$$aarticle 000053568 440_0 $$01439$$aComputer Physics Communications$$v176$$x0010-4655 000053568 500__ $$aRecord converted from VDB: 12.11.2012 000053568 520__ $$aWe describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray X1E, a SGI Altix 3700 and clusters of PCs running Windows XP. We study the performance of the software by simulating quantum computers containing up to 36 qubits, using up to 4096 processors and up to 1 TB of memory. Our results demonstrate that the simulator exhibits nearly ideal scaling as a function of the number of processors and suggest that the simulation software described in this paper may also serve as benchmark for testing high-end parallel computers. (C) 2006 Elsevier B.V. All rights reserved. 000053568 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0 000053568 588__ $$aDataset connected to Web of Science 000053568 650_7 $$2WoSType$$aJ 000053568 65320 $$2Author$$aquantum computation 000053568 65320 $$2Author$$acomputer simulation 000053568 65320 $$2Author$$ahigh performance computing 000053568 65320 $$2Author$$aparallelization 000053568 7001_ $$0P:(DE-HGF)0$$aMichielsen, K.$$b1 000053568 7001_ $$0P:(DE-HGF)0$$aDe Raedt, H.$$b2 000053568 7001_ $$0P:(DE-Juel1)VDB54396$$aTrieu, B.$$b3$$uFZJ 000053568 7001_ $$0P:(DE-Juel1)VDB57262$$aArnold, G.$$b4$$uFZJ 000053568 7001_ $$0P:(DE-Juel1)132238$$aRichter, M.$$b5$$uFZJ 000053568 7001_ $$0P:(DE-Juel1)132179$$aLippert, T.$$b6$$uFZJ 000053568 7001_ $$0P:(DE-HGF)0$$aWatanabe, H.$$b7 000053568 7001_ $$0P:(DE-HGF)0$$aIto, N.$$b8 000053568 773__ $$0PERI:(DE-600)1466511-6$$a10.1016/j.cpc.2006.08.007$$gVol. 176, p. 127 - 136$$p127 - 136$$q176<127 - 136$$tComputer physics communications$$v176$$x0010-4655$$y2007 000053568 8567_ $$uhttp://dx.doi.org/10.1016/j.cpc.2006.08.007 000053568 909CO $$ooai:juser.fz-juelich.de:53568$$pVDB 000053568 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0 000053568 9141_ $$y2007 000053568 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000053568 9201_ $$0I:(DE-Juel1)VDB62$$d31.12.2007$$gZAM$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0 000053568 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x1 000053568 970__ $$aVDB:(DE-Juel1)84131 000053568 980__ $$aVDB 000053568 980__ $$aConvertedRecord 000053568 980__ $$ajournal 000053568 980__ $$aI:(DE-Juel1)JSC-20090406 000053568 980__ $$aI:(DE-Juel1)VDB1045 000053568 980__ $$aUNRESTRICTED 000053568 981__ $$aI:(DE-Juel1)JSC-20090406 000053568 981__ $$aI:(DE-Juel1)VDB1045