000053839 001__ 53839 000053839 005__ 20200423204402.0 000053839 017__ $$aThis version is available at the following Publisher URL: http://prl.aps.org 000053839 0247_ $$2DOI$$a10.1103/PhysRevLett.97.116103 000053839 0247_ $$2WOS$$aWOS:000240545600046 000053839 0247_ $$2Handle$$a2128/1454 000053839 0247_ $$2altmetric$$aaltmetric:21815941 000053839 037__ $$aPreJuSER-53839 000053839 041__ $$aeng 000053839 082__ $$a550 000053839 084__ $$2WoS$$aPhysics, Multidisciplinary 000053839 1001_ $$0P:(DE-Juel1)VDB64577$$aYang, C.$$b0$$uFZJ 000053839 245__ $$aInfluence of surface roughness on superhydrophobicity 000053839 260__ $$aCollege Park, Md.$$bAPS$$c2006 000053839 300__ $$a116103 000053839 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000053839 3367_ $$2DataCite$$aOutput Types/Journal article 000053839 3367_ $$00$$2EndNote$$aJournal Article 000053839 3367_ $$2BibTeX$$aARTICLE 000053839 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000053839 3367_ $$2DRIVER$$aarticle 000053839 440_0 $$04925$$aPhysical Review Letters$$v97$$x0031-9007 000053839 500__ $$aRecord converted from VDB: 12.11.2012 000053839 520__ $$aSuperhydrophobic surfaces, with a liquid contact angle theta greater than 150 degrees, have important practical applications ranging from self-cleaning window glasses, paints, and fabrics to low-friction surfaces. Many biological surfaces, such as the lotus leaf, have a hierarchically structured surface roughness which is optimized for superhydrophobicity through natural selection. Here we present a molecular dynamics study of liquid droplets in contact with self-affine fractal surfaces. Our results indicate that the contact angle for nanodroplets depends strongly on the root-mean-square surface roughness amplitude but is nearly independent of the fractal dimension D-f of the surface. 000053839 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0 000053839 588__ $$aDataset connected to Web of Science 000053839 650_7 $$2WoSType$$aJ 000053839 7001_ $$0P:(DE-HGF)0$$aTartaglino, U.$$b1 000053839 7001_ $$0P:(DE-Juel1)130885$$aPersson, B. N. J.$$b2$$uFZJ 000053839 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.97.116103$$gVol. 97, p. 116103$$p116103$$q97<116103$$tPhysical review letters$$v97$$x0031-9007$$y2006 000053839 8567_ $$uhttp://hdl.handle.net/2128/1454$$uhttp://dx.doi.org/10.1103/PhysRevLett.97.116103 000053839 8564_ $$uhttps://juser.fz-juelich.de/record/53839/files/84512.pdf$$yOpenAccess 000053839 8564_ $$uhttps://juser.fz-juelich.de/record/53839/files/84512.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000053839 8564_ $$uhttps://juser.fz-juelich.de/record/53839/files/84512.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000053839 8564_ $$uhttps://juser.fz-juelich.de/record/53839/files/84512.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000053839 909CO $$ooai:juser.fz-juelich.de:53839$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000053839 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009 000053839 9141_ $$y2006 000053839 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000053839 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000053839 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x0 000053839 970__ $$aVDB:(DE-Juel1)84512 000053839 980__ $$aVDB 000053839 980__ $$aJUWEL 000053839 980__ $$aConvertedRecord 000053839 980__ $$ajournal 000053839 980__ $$aI:(DE-Juel1)PGI-1-20110106 000053839 980__ $$aUNRESTRICTED 000053839 980__ $$aFullTexts 000053839 9801_ $$aFullTexts 000053839 981__ $$aI:(DE-Juel1)PGI-1-20110106