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New Horizons for the
Realistic Description
of Materials with
Strong Correlations

Electronic structure theory is the basis
of modern technologies such as elec-
tronics and computing. Electronic prop-
erties of materials are determined by
guantum mechanics. Thus, by solving
the Schradinger equation, we should be
able to predict the properties of real
materials, or even design new ones
with superior qualities. Unfortunately,
solving this equation is not easy at

all. The essential complication comes
from the inherent quantum many-body
nature of the problem. As a result,

a brute-force solution is impossible,
except in the simplest cases. As an il-
lustration let us consider a single atom
of iron. Having 26 electrons, its wave
function is a function of 26 times 3 co-
ordinates. Neglecting spin, already an
extremely crude representation of this
function at merely 10 values of each
variable would thus require storage of
1078 numbers. Even after reducing this
number by exploiting symmetries, there
is simply not enough matter available

in our galaxy for building the required
memory.

Given this example, electronic struc-
ture theory seems a hopeless enter-
prise. Nevertheless, it is a thriving
discipline. This is largely due to density
functional theory. In practice, this ap-
proach drastically simplifies the many-
body problem by assuming that the
electrons retain their individuality and
experience the other electrons via a
static mean field. In this picture elec-

trons occupy states that extend over
the whole crystal, forming the band
structure of the material.

For many important classes of mate-
rials a density functional description
fails, however, even qualitatively. Strik-
ing effects like the breakdown of the
Fermi-liquid picture at the Mott metal-
insulator transition, heavy Fermion be-
havior, exotic one-dimensional Luttinger
phases, or high-temperature supercon-
ductivity cannot be addressed by such
a simple approach. All these materials
are strongly correlated. This means
that the repulsion between the elec-
trons is so strong that the electrons
lose their individuality, and the single-
particle picture breaks down. Because
of the strength of the interaction non-
perturbative many-body techniques
have to be used, so that powerful com-
puters are essential for reliable calcu-
lations. And still, calculations are re-
stricted to quite small model systems.
This means that the full Hamiltonian

of a crystal has to be approximated

by a small lattice Hamiltonian, which
describes only (few of) the strongly cor-
related electrons. All other electrons
have to be included in the calculation in
an average way.

The modern approach to solving the
many-body problem is dynamical mean-
field theory (DMFT). It reduces the
lattice Hamiltonian to a correlated
impurity embedded in a self-consistent
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dynamical medium, which mimics the
other lattice sites. This approximation
simplifies the problem significantly. Still,
a complicated quantum impurity prob-
lem remains, which has to be solved,
e.g., with quantum Monte Carlo (QMC])
or the Lanczos method. With DMFT, it
was possible, for the first time, to un-
derstand the physics of the Mott tran-
sition. In a Mott insulator the electronic
band structure loses its meaning. In-
stead, physics becomes more local and
it is more appropriate to think about
the electrons as occupying atomic-like
orbitals.

In this strongly correlated regime we
find a number of fascinating order-
ing phenomena. Most well known is
antiferromagnetism, where spins on
neighboring lattice sites point in oppo-
site directions. When there are many
correlated orbitals, a similar ordered
phase can exist: occupied orbitals on
neighboring sites point in different di-
rections, as illustrated in Figure 1. This
directionality can give rise to highly
anisotropic transport properties. Cou-
pling of spin and orbital degrees of

Figure 1: Orbital ordering in the Mott insula-
tor LaTiO;. The displayed Wannier orbitals
are the occupied states in this system, as
obtained from NMTO+DMFT calculations
using quantum Monte Carlo
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freedom can make transport proper-
ties strongly dependent on magnetic
fields. Such a mechanism is believed to
be the basis of the colossal magneto-
resistance effect (CMR]). Like the giant
magneto-resistance (GMR]), this effect,
once understood, holds the promise of,
e.g., another vast increase in hard-disk
capacity.

Complicated spatial patterns like or-
bital-ordering, however, can not be de-
scribed by a single-site approach such
as DMFT, which assumes that all lattice
sites are equivalent. In order to add
the required spatial degrees of free-
dom the single impurity of DMFT has to
be replaced by a cluster of sites. This
approach is accordingly called cluster
DMFT (CDMFT). Unfortunately, treat-
ing a cluster instead of a single site in-
creases the already high computational
cost of a calculation even further: the
required CPU time rises (at least) as
the third power of number of sites in
the cluster.

With an efficient parallelization of the
QMC solver and of the DMFT self-con-
sistency loop, we can however exploit
the spectacular increase in perfor-
mance offered by massively parallel
machines like the new Blue Gene/L
system in Julich called JUBL. Finally

it is possible to reach reasonably low
temperatures, where so far calcula-
tions of low temperature physics often
had to be done at about 1000 K. For
lack of computer time, uncontrolled ap-
proximations had to be introduced in
the model Hamiltonians. Now it is pos-
sible to check these approximations by
explicit calculations. In short, calcula-
tions are becoming significantly more
reliable and thus gain predictive power.
Alternatively, it is now also possible to
go beyond the single-site approximation
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of DMFT and study, e.g., the physics of
orbital ordering. In the foreseeable fu-
ture it should even be possible to com-
bine these two advances and simulate
realistic Hamiltonians using reasonably
large clusters at the experimental tem-
peratures.

It might not be too surprising that Blue
Gene/L is very suitable for large Monte
Carlo simulations, as the communica-
tion when taking statistics is some-
what limited. But also the second main
DMFT-solver, the Lanczos method, can
benefit from the new architecture.
This might, at first, be unexpected: In
the Lanczos method, the full ground
state vector of a many-body system is
handled. Thus the method is limited by
the available main memory. The princi-
pal problem for a distributed memary
implementation is that the central rou-
tine of a Lanczos code, the application
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Figure 2: Scheme of the transpose operation that makes memory access thread-
local when calculating the operation of the Hamiltonian on a state-vector. The
communication (blue arrows) is realized by a call to MPI_Alltoall. The small black
arrows indicate the local operations needed to complete the matrix transpose
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Figure 3: Speedup of our Lanczos code on

IBM Blue Gene/L JUBL (green (CO mode) and
turquoise (VN mode) symbols) and IBM Regatta
JUMP (blue and grey symbols) for different
problem sizes

of the Hamiltonian to the many-body
state leads, due to the kinetic energy
term, to very non-local memory access
patterns. Thus, a naive implementa-
tion, using one-sided communication to
access the required vector elements,
gives extremely poor performance,
even a speed-down (see lower right
panel of Figure 3). We can, however,
create an efficient MPI implementa-
tion by using a simple but important
observation: in the kinetic term of the
Hamiltonian the electron-spin is not
changed. Thus, writing the many-body
vector as a matrix v(i;,i;), where the
indices label spin-configurations, we
find that the hopping term only con-
nects vector elements that differ in
one index. Hence, storing entire slices
v(iy:) on one processor, the kinetic
term for the spin-down electrons is
local to that thread. After transpos-
ing v, the same is true for the hopping
of the spin-up electrons. Therefore,
the efficient implementation of the
sparse-matrix-vector product, which
is central to a Lanczos code, depends
on the performance of the matrix
transpose, which can be implemented
by MPI_Alltoall. And, as can be seen
from Figure 3, global communication is
indeed very efficient on Blue Gene/L:
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the main plot shows the speedup for a
calculation, where, in each iteration, a
state vector of about 18 GB has to be
moved across the machine. Comparing
with the IBM Regatta system JUMP in
Julich, it is interesting to note that per
CPU the code runs only about twice as
fast on JUMP than on JUBL, despite
the difference in clock speeds. In ad-
dition, JUBL shows a better speedup
when going to larger numbers of
processors (see upper left panel of
Figure 3). Finally, speedup is with the
number of CPUs, such that the code
can fully exploit the second CPU on
each node (virtual node mode]. It thus
turns out that Blue Gene/L is not only
the ideal machine for running large
Monte Carlo simulations but is also
extremely well suited for the Lanczos
method, which can efficiently take ad-
vantage of the very large, however dis-
tributed, memory.

With these methods, JUBL opens

the path to many-body calculations of
unprecedented complexity. This will

lift most of the limitations that usu-
ally force us to make uncontrolled ap-
proximations when constructing model
Hamiltonians, enabling many-body
physics to leap into the real word.
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