000053857 001__ 53857
000053857 005__ 20200423204402.0
000053857 0247_ $$2pmid$$apmid:21690888
000053857 0247_ $$2DOI$$a10.1088/0953-8984/18/32/025
000053857 0247_ $$2WOS$$aWOS:000239558500030
000053857 037__ $$aPreJuSER-53857
000053857 041__ $$aeng
000053857 082__ $$a530
000053857 084__ $$2WoS$$aPhysics, Condensed Matter
000053857 1001_ $$0P:(DE-Juel1)130885$$aPersson, B. N. J.$$b0$$uFZJ
000053857 245__ $$aRubber friction: role of the flash temperature
000053857 260__ $$aBristol$$bIOP Publ.$$c2006
000053857 300__ $$a7789 - 7823
000053857 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000053857 3367_ $$2DataCite$$aOutput Types/Journal article
000053857 3367_ $$00$$2EndNote$$aJournal Article
000053857 3367_ $$2BibTeX$$aARTICLE
000053857 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000053857 3367_ $$2DRIVER$$aarticle
000053857 440_0 $$03703$$aJournal of Physics: Condensed Matter$$v18$$x0953-8984$$y32
000053857 500__ $$aRecord converted from VDB: 12.11.2012
000053857 520__ $$aWhen a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10(-2) m s(-1) the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s(-1). This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.
000053857 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000053857 588__ $$aDataset connected to Web of Science, Pubmed
000053857 650_7 $$2WoSType$$aJ
000053857 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/18/32/025$$gVol. 18, p. 7789 - 7823$$p7789 - 7823$$q18<7789 - 7823$$tJournal of physics / Condensed matter$$v18$$x0953-8984$$y2006
000053857 8567_ $$uhttp://dx.doi.org/10.1088/0953-8984/18/32/025
000053857 8564_ $$uhttps://juser.fz-juelich.de/record/53857/files/0605273.pdf$$yRestricted
000053857 8564_ $$uhttps://juser.fz-juelich.de/record/53857/files/0605273.pdf?subformat=pdfa$$xpdfa$$yRestricted
000053857 909CO $$ooai:juser.fz-juelich.de:53857$$pVDB
000053857 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000053857 9141_ $$y2006
000053857 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000053857 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x0
000053857 970__ $$aVDB:(DE-Juel1)84529
000053857 980__ $$aVDB
000053857 980__ $$aConvertedRecord
000053857 980__ $$ajournal
000053857 980__ $$aI:(DE-Juel1)PGI-1-20110106
000053857 980__ $$aUNRESTRICTED
000053857 981__ $$aI:(DE-Juel1)PGI-1-20110106