001     53860
005     20200423204403.0
017 _ _ |a This version is available at the following Publisher URL: http://prl.aps.org
024 7 _ |a 10.1103/PhysRevLett.96.207401
|2 DOI
024 7 _ |a WOS:000237847000050
|2 WOS
024 7 _ |a 2128/1456
|2 Handle
037 _ _ |a PreJuSER-53860
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |a Persson, B. N. J.
|b 0
|u FZJ
|0 P:(DE-Juel1)130885
245 _ _ |a Chemical contribution to surface-enhanced Raman scattering
260 _ _ |a College Park, Md.
|b APS
|c 2006
300 _ _ |a 207401
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review Letters
|x 0031-9007
|0 4925
|y 20
|v 96
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We present a new mechanism for the chemical contribution to surface-enhanced Raman scattering (SERS). The theory considers the modulation of the polarizability of a metal nanocluster or a flat metal surface by the vibrational motion of an adsorbed molecule. The modulated polarization of the substrate coupled with the incident light will contribute to the Raman scattering enhancement. We show that for a metal cluster and for a flat metal surface this new chemical contribution may enhance the Raman scattering intensity by a factor of similar to 10(2) and similar to 10(4), respectively. The new SERS process is determined by the electric field parallel to the surface of the metal substrate at the molecular binding site.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Zhao, K.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Zhang, Z. Y.
|b 2
|0 P:(DE-HGF)0
773 _ _ |a 10.1103/PhysRevLett.96.207401
|g Vol. 96, p. 207401
|p 207401
|q 96<207401
|0 PERI:(DE-600)1472655-5
|t Physical review letters
|v 96
|y 2006
|x 0031-9007
856 7 _ |u http://dx.doi.org/10.1103/PhysRevLett.96.207401
|u http://hdl.handle.net/2128/1456
856 4 _ |u https://juser.fz-juelich.de/record/53860/files/84531.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/53860/files/84531.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/53860/files/84531.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/53860/files/84531.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:53860
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-TH-I
|l Theorie I
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB30
|x 0
970 _ _ |a VDB:(DE-Juel1)84531
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21