001     53861
005     20230426083227.0
017 _ _ |a This version is available at the following Publisher URL: http://prb.aps.org
024 7 _ |a 10.1103/PhysRevB.73.165423
|2 DOI
024 7 _ |a WOS:000237155800106
|2 WOS
024 7 _ |a 2128/1457
|2 Handle
037 _ _ |a PreJuSER-53861
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Volokitin, A. I.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems
260 _ _ |a College Park, Md.
|b APS
|c 2006
300 _ _ |a 165423
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review B
|x 1098-0121
|0 4919
|v 73
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We consider the effect of an external bias voltage and the spatial variation of the surface potential on the damping of cantilever vibrations. The electrostatic friction is due to energy losses in the sample created by the electromagnetic field from the oscillating charges induced on the surface of the tip by the bias voltage and spatial variation of the surface potential. A similar effect arises when the tip is oscillating in the electrostatic field created by charged defects in a dielectric substrate. The electrostatic friction is compared with the van der Waals friction originating from the fluctuating electromagnetic field due to quantum and thermal fluctuation of the current density inside the bodies. We show that the electrostatic and van der Waals friction can be greatly enhanced if on the surfaces of the sample and the tip there are two-dimensional (2D) systems, e.g., a 2D electron system or incommensurate layers of adsorbed ions exhibiting acoustic vibrations. We show that the damping of the cantilever vibrations due to the electrostatic friction may be of similar magnitude as the damping observed in recent experiments by Stipe [Phys. Rev. Lett. 87, 096801 (2001)]. We also show that at short separation the van der Waals friction may be large enough to be measured experimentally.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
542 _ _ |i 2006-04-26
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Persson, B. N. J.
|b 1
|u FZJ
|0 P:(DE-Juel1)130885
700 1 _ |a Ueba, H.
|b 2
|0 P:(DE-HGF)0
773 1 8 |a 10.1103/physrevb.73.165423
|b American Physical Society (APS)
|d 2006-04-26
|n 16
|p 165423
|3 journal-article
|2 Crossref
|t Physical Review B
|v 73
|y 2006
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.73.165423
|g Vol. 73, p. 165423
|p 165423
|n 16
|q 73<165423
|0 PERI:(DE-600)2844160-6
|t Physical review / B
|v 73
|y 2006
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.73.165423
|u http://hdl.handle.net/2128/1457
856 4 _ |u https://juser.fz-juelich.de/record/53861/files/84532.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/53861/files/84532.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/53861/files/84532.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/53861/files/84532.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:53861
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-TH-I
|l Theorie I
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB30
|x 0
970 _ _ |a VDB:(DE-Juel1)84532
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
999 C 5 |a 10.1103/PhysRevLett.83.2402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.86.2597
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.096801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1418256
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.265502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature02658
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.67.249
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.61.14694
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0370-2693(98)00466-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/scientificamerican0800-62
|9 -- missing cx lookup --
|1 N. Arkani-Hamed
|p 62 -
|2 Crossref
|t Sci. Am.
|v 283
|y 2000
999 C 5 |a 10.1103/PhysRevLett.81.4549
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.66.1216
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0039-6028(92)90386-K
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.47.12957
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0921-4526(94)90243-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.68.1196
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/00018736100101281
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/11/2/003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 A. I. Volokitin
|y 1998
|2 Crossref
|o A. I. Volokitin 1998
999 C 5 |a 10.1103/PhysRevB.65.115419
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.84.3504
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.69.022902
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.91.106101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.68.155420
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.70.085407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.94.086104
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 L. D. Landau
|y 1960
|2 Crossref
|t Electrodynamics of Continuous Media
|o L. D. Landau Electrodynamics of Continuous Media 1960
999 C 5 |a 10.1103/PhysRevLett.70.560
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s100510050219
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.44.3277
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.125149
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.39.10020
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 P. Senet
|y 1999
|2 Crossref
|o P. Senet 1999
999 C 5 |a 10.1103/PhysRevB.42.1541
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.43.2404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.56.4159
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1388626
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.32.3586
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 F. A. McClintock
|y 1966
|2 Crossref
|t Mechanical behavior of material
|o F. A. McClintock Mechanical behavior of material 1966
999 C 5 |a 10.1007/978-3-662-04283-0
|1 B. N. J. Persson
|2 Crossref
|9 -- missing cx lookup --
|y 2000
999 C 5 |a 10.1016/S0039-6028(98)00051-X
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21