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1 Support Vector Machines

Support vector machines (SVMs) are well-known data mining methods for classification
and regression problems1. Their popularity is mainly due to their applicability in various
fields of data mining, such as text mining2, biomedical research3, and many more. Their
accuracy is excellent and in many cases they outperform other machine learning methods
such as neural networks. SVMs have their roots in the field of statistical learning which
provides the reliable generalization theory4. Several properties that make this learning
method successful are well-known, e.g. the kernel trick5 for nonlinear classification and
the sparse structure of the final classification function. Inaddition, SVMs have an intuitive
geometrical interpretation, and a global minimum can be located during the SVM training
phase. In comparison to genetic algorithms or neural networks, less experience is required
for using them, which helps researchers to get started with SVM software quite fast.
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Figure 1. The problem of unbalanced and cost-sensitive classification.

2 Cost-Sensitive Support Vector Machine

Data sets with different class distributions lead to the effect that conventional machine
learning methods are biased towards the larger class6, 7. To overcome this problem and
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to obtain sensitive but also accurate classifiers we extended and improved the standard
SVM formulation. In addition we use techniques addressing the problem of unbalanced
classification, such as oversampling and threshold moving8. In Fig. 1 an unbalanced toy
problem is shown. Recent results for a CYP P450 drug classification problem are given in
ref 9.

Parallel Support Vector Machine

The main drawback of current SVM models is their high computational complexity for
large data sets10. This can in fact restrict the applicability of SVMs since the amount
of data for classification modeling increases dramatically. Therefore the development of
highly scalable parallel SVM algorithms is a new important topic of current SVM research.
Some algorithms for parallel SVM learning already do exist,but most of them are limited to
heuristics for distributed training on reduced data sets11, 12. These are not useful as stand-
alone systems for high quality learning on large data. We have implemented a parallel
support vector machine software well suited for multi-processor shared memory (SMP)
clusters that become more and more available. Our algorithmcan be used in serial and
parallel mode. The parallel implementation provides pure MPI and OpenMP modes as
well as a hybrid mode which combines fine and coarse grained parallelization aspects to a
well scalable SVM learning method13. The fine grained inner parallel scheme is shown in
Fig. 2.
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Figure 2. Parallel training algorithm based on a decomposition method for SVM training.

Summary and Future Work

We obtained a flexible cost-sensitive parallel SVM softwarethat can be used on high-end
machines with SMP architectures to process the large data sets that arise more and more
in bioinformatics and other fields of research. Future work will be on enhanced parameter
tuning.
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