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Abstract. The support vector machine (SVM) is a well-established and
accurate supervised learning method for the classification of data in var-
ious application fields. The statistical learning task — the so-called train-
ing — can be formulated as a quadratic optimization problem. During
the last years the decomposition algorithm for solving this optimization
problem became the most frequently used method for support vector
machine learning and is the basis of many SVM implementations to-
day. It is characterized by an internal parameter called working set size.
Usually small working sets have been used. The increasing amount of
data used for classification led to new parallel implementations of the
decomposition method with efficient inner solvers. With these solvers
larger working sets can be assigned. It was shown that for parallel train-
ing with the decomposition algorithm large working sets achieve good
speedup values. However, the choice of the optimal working set size for
parallel training is not clear. In this paper we show how the working set
size influences the number of decomposition steps, the number of kernel
function evaluations and the overall training time in serial and parallel
computation.

1 Introduction

The support vector machine for classification and regression is a powerful ma-
chine learning method. Its popularity is mainly due to the applicability in various
fields of data mining, such as text mining [1], biomedical research [2], and many
more. SVM test accuracy is excellent and in many cases it outperforms other
machine learning methods such as neural networks. SVM has its roots in the
field of statistical learning which provides the reliable generalization theory [3].
Several properties that make this learning method successful are well-known,
e.g. the kernel trick [4] for nonlinear classification and the sparse structure of
the final classification function. In addition, SVM has an intuitive geometrical
interpretation, and a global minimum can be located during the training phase.

Most current SVM implementations are based on the well known decompo-
sition algorithm for solving the optimization problem of SVM training [5]. It



repeatedly selects a subset of the free variables and optimizes over these vari-
ables. Thus, decomposition provides a framework for handling large SVM train-
ing tasks, where the kernel matrix does not fit into the available memory. Its
main advantage is the flexibility concerning the size of the subproblems — the
working set size. All values larger than one and smaller or equal to the training
set size are possible. The limitation for large working sets is due to memory
requirements of the machine and the characteristics of the inner solver. A widely
used decomposition method called SMO [6] uses the extreme case of only two
free variables in each iteration. Other approaches use larger working sets. How-
ever, the optimal choice of the working set size is not clear, especially for large
data sets. In this paper we will show, how the training time is influenced by the
size of the subproblems for the inner solver.

Real world data sets are becoming increasingly large. The main drawback
of current SVM models is their high computational complexity for large data
sets [7]. Parallel processing is essential to provide the performance required by
large-scale data mining tasks. Therefore the development of highly scalable par-
allel SVM algorithms is a new important topic of current SVM research. Recently
parallelized decomposition algorithms have been proposed. For parallel computa-
tion large working set sizes are possible and lead good speedup values. However,
it is not clear which influence the working set size has onto the overall training
time for large data sets in serial and parallel mode. One goal of this paper is
to show how the working set size controls the performance of SVM training in
general. In addition the results of serial computation are broaden to parallel
computations.

The paper is organized as follows. In Sect. 2 we review basics of binary
SVM classification. We limit the discussion to the issues that are essential for
understanding the following sections. In Sect. 3 we describe the scheme of the
serial decomposition algorithm and explain the influence of the working set size.
The parallelization of the support vector machine learning method is explained
in Sect. 4. In Sect. 5 we show results of various tests using small and large data
sets in serial and parallel mode. In view of overall learning time we discuss the
issue of the optimal working set size for parallel SVM training.

2 Basic Concepts of the Support Vector Machine

Support vector learning means to determine functions that can be used to classify
data points. Here, we discuss binary classification, but the SVM learning frame-
work also works for multi-class and regression problems [8]. The supervised SVM
learning method is based on so-called reference data of given input—output pairs
(training data)

(', y;) €eR" x {~1,1}, i=1,...,1,

that are taken to find an optimal separating hyperplane [9]

filx) =w'z +b=0.



Using assumptions of statistical learning theory the desired classifier is then

defined as (@)
_J+1if fi(z) >0,
hiz) = {—1, if fi(z) < 0,

with the linear decision function fi, see Fig. 1.
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Fig. 1. Support vector machine classification function for given training data.

If the two classes are not linearly separable then f is replaced with a nonlinear
decision function [10]

I
fa(z) = ZyiaiK(mi; x) +0,
i=1

where K : R® x R" — R is a (nonlinear) kernel function [4]. The classification
parameters «; can be obtained as the unique global solution of a suitable (dual)
quadratic optimization problem [10]

1
. 1 7
Inin g(a) = e Ha — ;ai (1)

with H € R H;; = y; K (2%, 27)y; (1 <4,j <), constrained to

aly=0, 0<o;<C.
In the final solution only a part of the entries in « are positive, whereas all
others are zero. This is due to the Karush-Kuhn-Tucker conditions for convex
optimization problems. In SVM theory the corresponding training points are
called support vectors, see Fig. 1. The Hessian H is usually dense, and therefore
the complexity of evaluating the objective function g in (1) scales quadratically



with the number [ of training pairs, leading to very time-consuming computa-
tions. The parameter C controls the trade-off between the width of the classifier’s
margin and the number of weak and wrong classifications in the training set. This
parameter has to be chosen by the user. Due to space limitations we omit a de-
tailed introduction to the SVM theory. For readers who are not familiar with
this topic we refer to the tutorial [11].

3 Decomposition and the Working Set Size

The high cost for solving (1) is due to the size and the density of the quadratic
matrix H. Classical solvers for QP problems with simple constraints are the so
called active set methods [12,13], which in each iteration minimize the objective
function over the active set (a subset of the constraints that are locally active),
until a solution is reached. A variation of the active set approach for support vec-
tor machine training is the well known decomposition method described in [14].
It repeatedly splits the original optimization problem (1) into active and inac-
tive parts. In each step, the active data points (or working set points) are used
to define a new QP subproblem which is then handled by an inner solver. This
method is very flexible since the user can choose the desired number of active
points [ < I to control the size of the QP subproblems. Due to space limita-
tions the decomposition algorithm cannot be discussed here in detail, we refer
to [5,15,16] for a detailed description. To summarize, in each iteration of the
decomposition algorithm the following five steps need to be processed:

1. Select a working set of [ “active” variables from the [ free variables ;.

2. Solve the quadratic subproblem of size [ that results from restricting
the optimization in (1) to the active variables and fixing the
remaining variables.

3. Update the global solution vector «.
4. Update the gradient of the overall problem.
5. Check a stopping criterion.

Implementation of a sophisticated working set selection scheme, an efficient sub-
problem solver and a fast but accurate gradient update are crucial for good
overall performance of decomposition methods. Several approaches have been
proposed and improved during the last decade. Promising suggestions are given
in

— [17] — for the working set selection,
— [18,19] — for fast inner solvers,
— [20,21] — for sparse gradient updates.
As already mentioned, one important model parameter of the decomposition

method is the working set size [. In is known, that for larger working sets the
number of decomposition steps will decrease, but a single step may be more



expensive. In contrast for small working sets the quadratic subproblem may be
solved very fast, but the number of steps will increase heavily. Choosing | = 2
results in the well-known Sequential Minimal Optimization (SMO) scheme [6].
SMO decomposition steps are fast, but this method suffers from a very large
number of optimization steps even when using moderate problem sizes. Today,
it is not clear which working set sizes are preferable. In this work we will analyze
the overall behavior of this two competing effects. The training time not only
depends on the working set selection scheme and the inner solver, but also on
the data set and the characteristics of the machine used for running the software.
However, as we will show in Sect. 5, the working set size has enourmous influence
onto the training time of SVM training and needs to be optimized primarily. We
will show that indeed a global minimum of the training time does exist and needs
to be located, especially when using expensive parallel computing resources.

4 Parallel Support Vector Machine Decomposition

The SVM training, i.e. the solution of the quadratic program (1), suffers from
large data sets [22]. Since data sets are becoming increasingly large in various
fields of research, e.g. in text mining, parallel SVM training is essential to im-
prove performance. The development of parallel SVM algorithms is a young and
emerging field of research and, as we recently discussed in [23], the number of
real parallel implementation is rare. In this work we target an already fruitful
approach for serial and parallel SVM training with the decomposition method.
In [20, 21] a parallelized MPI-based decomposition algorithm has been proposed.
It is based on a variable projection method as inner solver [24,25]. In [26] we
have presented an implementation of parallel support vector machine decomposi-
tion training for shared memory systems based on this solver. The parallel SVM
algorithm uses library and loop parallelism. Calls to the ESSLSMP library (Engi-
neering Scientific Subroutine Library for Shared Memory Parallel Machines) [27]
as well as OpenMP loop level parallelism lead to a scalable training method. In
both approaches the main parallel parts of the decomposition method belong to
the time consuming computations in each step [26], i.e.

1. the computation of the kernel matrix for the new subproblem,

2. expensive matrix-vector multiplications in the decomposition routine and
the inner solver,

3. the gradient update for the overall optimization problem.

For details to the parallelization schemes we refer to [20] and [26]. Tests for both
packages were run using large working sets, which led to promising speedup
values, e.g. for [ = 5000 in [26] and 3600 in [20]. However, the improved serial
algorithms have not been tested for smaller data sets or large data sets with small
working set sizes. This aspect needs to be analyzed and will bring improvements
for serial as well as parallel support vector machine training.



5 Experimental Results

We performed our tests on the Juelich Multi Processor (JUMP) [28] using our
parallel SVM software which also provides a parallel validation loop [23]. JUMP
is a distributed shared memory parallel computer consisting of 41 frames (nodes).
Each node contains 32 IBM Power4+ processors running at 1.7 GHz, and 128 GB
shared main memory. The 1312 processors have an aggregate peak performance
of 8.9 TFlop/s. Our software is written using Fortran90 and the ESSLSMP
library. For each thread we chose the following characteristics:

— 3.5 GB consumable memory,
— 3.0 GB data limit,
— 0.5 GB stack limit,
1h wall clock limit.

5.1 Description of the Data Sets

The so-called australian data set is available from [29]. It containes credit card
applications with 14 attributes — 6 numerical and 8 categorical. The number of
Instances is 690. The class distribution is 44.5% vs. 55.5%. The fourclass data
set was introduced in [30]. It is artificial and is aimed at testing the performance
of classifiers. 862 data points in a two-dimensional space have been assigned to
four classes in the original data set. The classes are distributed irregularly and
show isolated regions to complicate classification. The data set was transformed
into a binary classification problem and is available from [31]. The adult data
set is available unter [29]. The task is to predict whether a household has an
income greater than $50000 [6]. Originally 14 attributes of a census form of a
household were given. We use the data set in the discretized form with 123 binary
features, which is available from [31] under the name a9a. 32561 training points
are available. In this paper we use two versions of the data — the whole data set
as well as a subset of 15000 points which we call adultpart.

australian|fourclass|adultpart| adult
# features 14 2 123| 123
# training points 690 862 15000(32561
# positive points 307 307 3562| 7841
# negative points 383 555 11438(24720

Table 1. Characteristics of the data sets.

5.2 Influence of the Working Set Size for Serial Computation

In Tables 2 and 3 we show the number of decomposition steps D, the number of
kernel function evaluations E, the number of support vectors sv as well as the



training time ¢ (in seconds) assigning various working set sizes for the australian
as well as the fourclass data set. For a better interpretation we show the plot
of the training times (with some more values) in Fig. 2. Starting with 4 active

l 4 6| 10/ 20 50| 80| 100| 120|150| 200| 350| 500| 600 650| 690
#D |7455|6193|4349|1882| 543| 90| 31| 14, 9| 7| 5 3 4 31 1
#E119.9124.2|28.8/25.5(18.9| 5.1| 2.2| 1.2| 0.9/ 0.9] 1.1| 1.4| 1.4, 16| 0.7
#sv| 246| 247| 246| 246| 247| 247| 247| 246| 247| 247| 247| 247| 246| 247|247
t 5.60| 6.27| 7.58| 7.35|7.08|2.78|1.24|0.94(1.01|2.89(5.88|12.48|18.17|23.54|7.55

Table 2. Results for the australian data set.

l 4| 10f 20| 30| 50| 100|200| 300| 400| 500{ 600| 700| 800| 850/ 862
#D|2260| 640| 41| 25| 15| 13| 5| 4| 4 5 3 4 3 20 1
#E | 7.76]5.33|0.52| 0.39|0.34|0.42|0.39]0.54(0.81| 1.43| 1.22| 2.11| 2.04| 1.55(0.83
#sv| 98] 98| 98| 98| 98| 98| 98| 98| 98| 98| 98] 98 98| 98] 98
t 1.90(1.42|0.28]|0.26|0.72|1.10|4.28|5.89(5.01{16.18|12.87|21.78|16.93|20.20|9.21

Table 3. Results for the fourclass data set.
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Fig. 2. Training times for different working set sizes (small data sets).

points we increased the working set size until the maximal value (the whole
training set) was reached. The results show similar behavior. For small values



of [ the number of decomposition steps is large and decreases with increasing L.
The number of kernel evaluations is not monotone in such a way. For both data
sets there is an interval of working set sizes that lead to small numbers of kernel
evaluations. For the australian data set this interval is approx. [120, 350] and for
the fourclass data set [30,200]. Please note that for both data sets the largest
possible value of [ led to another minimum for the sum of kernel evaluations.
This is due to the fact, that in this extreme case only a single decomposition step
is required which saves a lot of overhead. This is an interesting result. However,
the choice of [ = [ seems not to be useful. First, it does not always lead to a global
minimum of kernel computations as for the fourclass data set and second the
training times are not optimal. Although training times show local minima for
[ =1 the optimal training times for both data sets are smaller. For the fourclass
data set we can save a factor of 40 in training time. This behavior comes from
the fact that we implemented a sparse gradient update, as it was introduced
in [20]. Thus, each iteration of the decomposition method is extremely cheap for
small data sets. It seems that together with a fast inner solver and sophisticated
working set selection the small working set sizes still beat the bigger ones. Please
note that no accuracy values are given. We did not run any tests, but used the
whole data sets for training. Concerning accuracy of SVM and parameter fitting
we refer to [32,33].

l 10| 50| 100| 300|{ 500| 650| 800{1000{1400/2000|2400{3000|3500{4000
#D (6094|1465 563| 109| 47| 32| 28 23| 18 13| 12| 10 9 7
#E| 810{1028| 777| 402| 260| 212| 213| 213| 222| 228| 243| 260| 275| 261
#5v[5526(5549(5546|5546|5541(5547|5539|5544|5539|5543|5542(55585550(5555
t 310] 375| 286| 156 109| 97| 108| 122| 187| 316| 443| 639| 9251116

Table 4. Results for the adultpart data set.

l 50{ 100/ 300{ 500| 650/ 800| 1200| 1600 2000| 2400| 3000 3500
#D| 4472| 1774| 332 145] 100 70 40 35 27 22 18 16
#E | 6803| 5428| 2832| 1903| 1591| 1310| 1013| 1062| 1042| 992| 1001| 1031
#sv|11779(11758|11768|11759|11755(11766|11766|11752|11771|11765(11751|11782
t 2477 1986| 1063| 874| 681| 616| 592| 793| 962| 1064| 1477| 2176

Table 5. Results for the adult data set.

In Tables 4 and 5 we show the number of decomposition steps D, the number
of kernel function evaluations F, the number of support vectors sv as well as the
training time ¢ (in seconds) for the adultpart as well as the adult data set using
different working set sizes. The corresponding plot with some more values is
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Fig. 3. Training times for different working set sizes (huge data sets).

shown in Fig. 3. Results for both data sets show similar behavior. The training
time curve is convex and has a minimum at [ = 650 for the adultpart and
[ = 1200 for the adult data set. The numbers of kernel evaluations are high
for small data sets and decrease for increasing working set sizes. They reach a
first minimum for the minimal training times, but, the they remain somehow
stable while the training time increases dramatically. This is caused by the inner
solver and gradient update costs. Working set sizes between 500 and 1400 led
to acceptable training times and for the largest training set larger working set
sizes are preferable.

5.3 Influence of the Working Set Size for Parallel Computation

The parallel decomposition scheme is based on parallel computations of the
kernel matrix and parallel gradient update in each decomposition step as well
as parallel matrix-vector multiplications in the inner solver. Usually applied to
very large working sets [20,34] we showed that smaller working set sizes lead
to better results in the serial case. In this section we will broaden our analysis
to parallel training and run the same tests for the largest data set (adult) to
show the parallel behavior of the decomposition method for smaller working
set sizes. In Table 6 some results for parallel runs using 1, 2 and 4 threads are
given. With ¢(-) we denote the training time against the number of threads and
with s(-) the corresponding speedup value, where the speedup is defined in the
usual way as s(n) = t(1)/t(n), where n is the number of threads. In Fig. 4 we
show the corresponding plots for all our tests. The minimal training time for the
parallel runs is again achieved with [ = 1200. The speedup values in this area
are comparable to those with larger working sets. Thus, working set sizes around
1000 are preferable in this case since they lead to the best (smallest) training
times in serial as well an parallel mode.



l 50| 100{ 300{500{650|800{1000|1200{1600{2000|2400|2800{3000|3500
t(1)]2477|1986|1063|874|681(616| 651| 592| 793| 962|1064|1346|1477|2176
t(2)|1141|1006| 571|460(388|370| 379| 347| 458| 558| 617| 795| 879(1224
s(2)| 2.2| 2.0 1.9{1.9/1.9|1.7 1.7| 1.7| 17| 1.7 17| 1.7] 1.7 1.9
t(4)| 659| 610| 318|276|234(201| 200| 191| 250| 318| 356| 457| 486| 713
s(4)| 3.8| 3.3 3.313.2/2.9(3.1| 3.3] 3.1| 3.2| 3.0] 3.0/ 2.9| 3.0/ 3.1

Table 6. Parallel training results for the adult data set with 1, 2 and 4 threads.

3000 [ ' ' t T

adult data (1 thread)
adult data (2 threads) ---<---
adult data (4 threads) ---*---

2500

2000
’J \
Q
o
< 1500
E \ /
5 B
1000 [ /‘/” e =
\ x7
. \x \’SKP‘W\../‘*/ I x _,«»"’><
500 [ SN R
S atasieions Saral SR S
e Kok g Ko KK

0 500 1000 1500 2000 2500 3000 3500 4000
working set size

Fig. 4. Training times for different working set sizes with 1 and 2 threads (adult data
set).

In parallel data mining the interest is in efficiently using the available re-
sources. In our tests we observed acceptable speedup values for all working set
sizes we had chosen. This is due to the fact that the parallel kernel matrix eval-
uation is perfectly scalable and the problem size for the parallel gradient update
is not dependent on the working set size, so that the parallel scheme works fine.
From our tests we conclude that the optimal working set size is indeed dependent
on the data set size and increases for large data sets. Very large working sets
lead to high training times in general. In our tests we observed global minima
for the training time, that are smaller than we expected so far.

6 Summary and Future Work

We have analyzed the decomposition algorithm for SVM training with a fast in-
ner solver. For several small and large data sets we have tested how the working
set size influences the training time. For small data sets we observed enormous
differences, whereas the variability was smaller for the large data sets. However,
differences of one order of magnitude may occur easily if choosing a non-optimal



working set size. For small optimal working sets like in our results the attain-
able speedups for the parallel SVM training will be limited due to the fact that
the efficiency of parallel matrix-vector multiplications decreases with increas-
ing numbers of CPUs or threads. However, this is not a critical point in SVM
learning. As expensive parameter tuning experiments need to be done, remain-
ing CPUs can be assigned to either parallel cross validation schemes [23] or to
parallel parameter optimization methods [35].

In the future we will continue with the first experiments presented in this
paper using even larger data sets. In addition, we will work on methods that
automatically compute the optimal working set size for parallel SVM learning
depending on the data set, the characteristics of the machine used as well as the
validation and/or parameter optimization scheme.
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