000054005 001__ 54005
000054005 005__ 20180211190833.0
000054005 0247_ $$2DOI$$a10.1002/cpe.1128
000054005 0247_ $$2WOS$$aWOS:000248578200004
000054005 037__ $$aPreJuSER-54005
000054005 041__ $$aeng
000054005 082__ $$a004
000054005 084__ $$2WoS$$aComputer Science, Software Engineering
000054005 084__ $$2WoS$$aComputer Science, Theory & Methods
000054005 1001_ $$0P:(DE-Juel1)VDB1927$$aWolf, F.$$b0$$uFZJ
000054005 245__ $$aAutomatic analysis of inefficiency patterns in parallel applications
000054005 260__ $$aChichester$$bWiley$$c2007
000054005 300__ $$a1481 - 1496
000054005 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000054005 3367_ $$2DataCite$$aOutput Types/Journal article
000054005 3367_ $$00$$2EndNote$$aJournal Article
000054005 3367_ $$2BibTeX$$aARTICLE
000054005 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000054005 3367_ $$2DRIVER$$aarticle
000054005 440_0 $$017301$$aConcurrency and Computation: Practice and Experience$$v19$$x1532-0626$$y11
000054005 500__ $$aRecord converted from VDB: 12.11.2012
000054005 520__ $$aEvent tracing is a powerful method for analyzing the performance behavior of parallel applications. Because event traces record the temporal and spatial relationships between individual runtime events, they allow application developers to analyze dependences of performance phenomena across concurrent control flows. However, in view of the large amounts of data generated on contemporary parallel machines, the depth and coverage of a purely manual analysis is often limited. Our approach automatically searches event traces for patterns of inefficient behavior, classifies detected instances by category, and quantifies the associated performance penalty. This enables developers to study the performance of their applications at a high level of abstraction, while requiring significantly less time and expertise than a manual analysis. Copyright (c) 2006 John Wiley & Sons, Ltd.
000054005 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0
000054005 588__ $$aDataset connected to Web of Science
000054005 650_7 $$2WoSType$$aJ
000054005 65320 $$2Author$$aperformance tools
000054005 65320 $$2Author$$aevent tracing
000054005 65320 $$2Author$$apattern search
000054005 7001_ $$0P:(DE-Juel1)132199$$aMohr, B.$$b1$$uFZJ
000054005 7001_ $$0P:(DE-HGF)0$$aDongarra, J.$$b2
000054005 7001_ $$0P:(DE-HGF)0$$aMoore, S.$$b3
000054005 773__ $$0PERI:(DE-600)2052606-4$$a10.1002/cpe.1128$$gVol. 19, p. 1481 - 1496$$p1481 - 1496$$q19<1481 - 1496$$tConcurrency and computation$$v19$$x1532-0626$$y2007
000054005 8567_ $$uhttp://dx.doi.org/10.1002/cpe.1128
000054005 909CO $$ooai:juser.fz-juelich.de:54005$$pVDB
000054005 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0
000054005 9141_ $$y2007
000054005 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000054005 9201_ $$0I:(DE-Juel1)VDB62$$d31.12.2007$$gZAM$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000054005 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x1
000054005 970__ $$aVDB:(DE-Juel1)84733
000054005 980__ $$aVDB
000054005 980__ $$aConvertedRecord
000054005 980__ $$ajournal
000054005 980__ $$aI:(DE-Juel1)JSC-20090406
000054005 980__ $$aI:(DE-Juel1)VDB1045
000054005 980__ $$aUNRESTRICTED
000054005 981__ $$aI:(DE-Juel1)JSC-20090406
000054005 981__ $$aI:(DE-Juel1)VDB1045