001     54005
005     20180211190833.0
024 7 _ |2 DOI
|a 10.1002/cpe.1128
024 7 _ |2 WOS
|a WOS:000248578200004
037 _ _ |a PreJuSER-54005
041 _ _ |a eng
082 _ _ |a 004
084 _ _ |2 WoS
|a Computer Science, Software Engineering
084 _ _ |2 WoS
|a Computer Science, Theory & Methods
100 1 _ |a Wolf, F.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB1927
245 _ _ |a Automatic analysis of inefficiency patterns in parallel applications
260 _ _ |a Chichester
|b Wiley
|c 2007
300 _ _ |a 1481 - 1496
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Concurrency and Computation: Practice and Experience
|x 1532-0626
|0 17301
|y 11
|v 19
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Event tracing is a powerful method for analyzing the performance behavior of parallel applications. Because event traces record the temporal and spatial relationships between individual runtime events, they allow application developers to analyze dependences of performance phenomena across concurrent control flows. However, in view of the large amounts of data generated on contemporary parallel machines, the depth and coverage of a purely manual analysis is often limited. Our approach automatically searches event traces for patterns of inefficient behavior, classifies detected instances by category, and quantifies the associated performance penalty. This enables developers to study the performance of their applications at a high level of abstraction, while requiring significantly less time and expertise than a manual analysis. Copyright (c) 2006 John Wiley & Sons, Ltd.
536 _ _ |a Scientific Computing
|c P41
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK411
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a performance tools
653 2 0 |2 Author
|a event tracing
653 2 0 |2 Author
|a pattern search
700 1 _ |a Mohr, B.
|b 1
|u FZJ
|0 P:(DE-Juel1)132199
700 1 _ |a Dongarra, J.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Moore, S.
|b 3
|0 P:(DE-HGF)0
773 _ _ |a 10.1002/cpe.1128
|g Vol. 19, p. 1481 - 1496
|p 1481 - 1496
|q 19<1481 - 1496
|0 PERI:(DE-600)2052606-4
|t Concurrency and computation
|v 19
|y 2007
|x 1532-0626
856 7 _ |u http://dx.doi.org/10.1002/cpe.1128
909 C O |o oai:juser.fz-juelich.de:54005
|p VDB
913 1 _ |k P41
|v Scientific Computing
|l Supercomputing
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK411
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ZAM
|l Zentralinstitut für Angewandte Mathematik
|d 31.12.2007
|g ZAM
|0 I:(DE-Juel1)VDB62
|x 0
920 1 _ |k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|0 I:(DE-Juel1)VDB1045
|x 1
970 _ _ |a VDB:(DE-Juel1)84733
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JSC-20090406
981 _ _ |a I:(DE-Juel1)VDB1045


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21