000054006 001__ 54006
000054006 005__ 20180211181750.0
000054006 0247_ $$2DOI$$a10.1007/s10751-005-9005-7
000054006 0247_ $$2WOS$$aWOS:000235281400007
000054006 037__ $$aPreJuSER-54006
000054006 041__ $$aeng
000054006 082__ $$a530
000054006 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000054006 084__ $$2WoS$$aPhysics, Condensed Matter
000054006 084__ $$2WoS$$aPhysics, Nuclear
000054006 1001_ $$0P:(DE-Juel1)VDB64738$$aHöhler, H.$$b0$$uFZJ
000054006 245__ $$aImpurity-Vacancy Complexes in Si and Ge
000054006 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2006
000054006 300__ $$a37 - 40
000054006 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000054006 3367_ $$2DataCite$$aOutput Types/Journal article
000054006 3367_ $$00$$2EndNote$$aJournal Article
000054006 3367_ $$2BibTeX$$aARTICLE
000054006 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000054006 3367_ $$2DRIVER$$aarticle
000054006 440_0 $$02425$$aHyperfine Interactions$$v158$$x0304-3843
000054006 500__ $$aRecord converted from VDB: 12.11.2012
000054006 520__ $$aWe examine the electronic and geometrical structure Of impurity-vacancy complexes for 11 sp-impurities in Si and Ge, using the pseudopotential plane wave (PPW) and the all-electron Kohn-Korringa-Rostoker (KKR) methods. We find that all impurities of the 5sp and 6sp series prefer the split-vacancy configuration. For Cd and Sn we obtain good agreement Of the calculated hyperfine parameters with experimental PAC and EPR data. Impurities of the 3sp and 4sp series form distorted substitutional complexes (except Al, which forms a split complex in Si). This trend strongly correlates with the lattice relaxations of nearest neighbors around the isolated (without vacancy) substitutional impurities.
000054006 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000054006 588__ $$aDataset connected to Web of Science, Pubmed
000054006 65320 $$2Author$$agermanium
000054006 65320 $$2Author$$ahyperfine fields
000054006 65320 $$2Author$$aimpurities
000054006 65320 $$2Author$$asilicon
000054006 65320 $$2Author$$avacancy complexes
000054006 650_7 $$2WoSType$$aJ
000054006 7001_ $$0P:(DE-Juel1)130513$$aAtodiresei, N.$$b1$$uFZJ
000054006 7001_ $$0P:(DE-Juel1)VDB3933$$aSchroeder, K.$$b2$$uFZJ
000054006 7001_ $$0P:(DE-Juel1)131057$$aZeller, R.$$b3$$uFZJ
000054006 7001_ $$0P:(DE-Juel1)130612$$aDederichs, P. H.$$b4$$uFZJ
000054006 773__ $$0PERI:(DE-600)2021614-2$$a10.1007/s10751-005-9005-7$$gVol. 158, p. 37 - 40$$p37 - 40$$q158<37 - 40$$tHyperfine interactions$$v158$$x0304-3843$$y2006
000054006 8567_ $$uhttp://dx.doi.org/10.1007/s10751-005-9005-7
000054006 909CO $$ooai:juser.fz-juelich.de:54006$$pVDB
000054006 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000054006 9141_ $$y2006
000054006 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000054006 9201_ $$0I:(DE-Juel1)VDB32$$d31.12.2006$$gIFF$$kIFF-TH-III$$lTheorie III$$x0
000054006 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x1
000054006 970__ $$aVDB:(DE-Juel1)84734
000054006 980__ $$aVDB
000054006 980__ $$aConvertedRecord
000054006 980__ $$ajournal
000054006 980__ $$aI:(DE-Juel1)PGI-2-20110106
000054006 980__ $$aI:(DE-Juel1)PGI-1-20110106
000054006 980__ $$aUNRESTRICTED
000054006 981__ $$aI:(DE-Juel1)PGI-2-20110106
000054006 981__ $$aI:(DE-Juel1)PGI-1-20110106