001     54104
005     20240709081736.0
024 7 _ |a 10.1021/es0523845
|2 DOI
024 7 _ |a WOS:000237921200029
|2 WOS
024 7 _ |a 0013-936X
|2 ISSN
024 7 _ |a 1520-5851
|2 ISSN
024 7 _ |a altmetric:1369269
|2 altmetric
024 7 _ |a pmid:16786698
|2 pmid
037 _ _ |a PreJuSER-54104
041 _ _ |a eng
082 _ _ |a 050
084 _ _ |2 WoS
|a Engineering, Environmental
084 _ _ |2 WoS
|a Environmental Sciences
100 1 _ |a Dentener, F.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a The Global Atmospheric Environment for the Next Generation
260 _ _ |c 2006
|a Columbus, Ohio
|b American Chemical Society
300 _ _ |a 3586 - 3594
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Environmental Science and Technology
|x 0013-936X
|0 1865
|v 40
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Air quality, ecosystem exposure to nitrogen deposition, and climate change are intimately coupled problems: we assess changes in the global atmospheric environment between 2000 and 2030 using 26 state-of-the-art global atmospheric chemistry models and three different emissions scenarios. The first (CLE) scenario reflects implementation of current air quality legislation around the world, while the second (MFR) represents a more optimistic case in which all currently feasible technologies are applied to achieve maximum emission reductions. We contrast these scenarios with the more pessimistic IPCC SRES A2 scenario. Ensemble simulations for the year 2000 are consistent among models and show a reasonable agreement with surface ozone, wet deposition, and NO2 satellite observations. Large parts of the world are currently exposed to high ozone concentrations and high deposition of nitrogen to ecosystems. By 2030, global surface ozone is calculated to increase globally by 1.5 +/- 1.2 ppb (CLE) and 4.3 +/- 2.2 ppb (A2), using the ensemble mean model results and associated +/- 1 sigma standard deviations. Only the progressive MFR scenario will reduce ozone, by -2.3 +/- 1.1 ppb. Climate change is expected to modify surface ozone by -0.8 +/- 0.6 ppb, with larger decreases over sea than over land. Radiative forcing by ozone increases by 63 +/- 15 and 155 +/- 37 mW m(-2) for CLE and A2, respectively, and decreases by -45 +/- 15 mW m(-2) for MFR. We compute that at present 10.1% of the global natural terrestrial ecosystems are exposed to nitrogen deposition above a critical load of 1 g N m(-2) yr(-1). These percentages increase by 2030 to 15.8% (CLE), 10.5% (MFR), and 25% (A2). This study shows the importance of enforcing current worldwide air quality legislation and the major benefits of going further. Nonattainment of these air quality policy objectives, such as expressed by the SRES-A2 scenario, would further degrade the global atmospheric environment.
536 _ _ |a Atmosphäre und Klima
|c P22
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK406
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Stevenson, D.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Ellingsen, K.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a van Noije, T.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Schultz, M.
|b 4
|u FZJ
|0 P:(DE-Juel1)6952
700 1 _ |a Amann, M.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Atherton, C.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Bell, N.
|b 7
|0 P:(DE-HGF)0
700 1 _ |a Bergmann, D.
|b 8
|0 P:(DE-HGF)0
700 1 _ |a Bey, I.
|b 9
|0 P:(DE-HGF)0
700 1 _ |a Bouwman, L.
|b 10
|0 P:(DE-HGF)0
700 1 _ |a Butler, T.
|b 11
|0 P:(DE-HGF)0
700 1 _ |a Cofala, J.
|b 12
|0 P:(DE-HGF)0
700 1 _ |a Collins, B.
|b 13
|0 P:(DE-HGF)0
700 1 _ |a Drevet, J.
|b 14
|0 P:(DE-HGF)0
700 1 _ |a Doherty, R.
|b 15
|0 P:(DE-HGF)0
700 1 _ |a Eickhout, B.
|b 16
|0 P:(DE-HGF)0
700 1 _ |a Eskes, H. J.
|b 17
|u FZJ
|0 P:(DE-Juel1)VDB64819
700 1 _ |a Fiore, A.
|b 18
|0 P:(DE-HGF)0
700 1 _ |a Gauss, M.
|b 19
|0 P:(DE-HGF)0
700 1 _ |a Hauglustaine, D.
|b 20
|0 P:(DE-HGF)0
700 1 _ |a Horowitz, L.
|b 21
|0 P:(DE-HGF)0
700 1 _ |a Isaksen, I. S. A.
|b 22
|0 P:(DE-HGF)0
700 1 _ |a Josse, B.
|b 23
|0 P:(DE-HGF)0
700 1 _ |a Lawrence, M.
|b 24
|0 P:(DE-HGF)0
700 1 _ |a Krol, M.
|b 25
|0 P:(DE-HGF)0
700 1 _ |a Lamarque, J. F.
|b 26
|0 P:(DE-HGF)0
700 1 _ |a Montanaro, V.
|b 27
|0 P:(DE-HGF)0
700 1 _ |a Müller, J. F.
|b 28
|0 P:(DE-HGF)0
700 1 _ |a Peuch, V. H.
|b 29
|0 P:(DE-HGF)0
700 1 _ |a Pitari, G.
|b 30
|0 P:(DE-HGF)0
700 1 _ |a Pyle, J.
|b 31
|0 P:(DE-HGF)0
700 1 _ |a Rast, S.
|b 32
|0 P:(DE-HGF)0
700 1 _ |a Rodriguez, J.
|b 33
|0 P:(DE-HGF)0
700 1 _ |a Sanderson, M.
|b 34
|0 P:(DE-HGF)0
700 1 _ |a Savage, N. H.
|b 35
|0 P:(DE-HGF)0
700 1 _ |a Shindell, D.
|b 36
|0 P:(DE-HGF)0
700 1 _ |a Strahan, S.
|b 37
|0 P:(DE-HGF)0
700 1 _ |a Szopa, S.
|b 38
|0 P:(DE-HGF)0
700 1 _ |a Sudo, J.
|b 39
|0 P:(DE-HGF)0
700 1 _ |a van Dingenen, R.
|b 40
|0 P:(DE-HGF)0
700 1 _ |a Wild, O.
|b 41
|0 P:(DE-HGF)0
700 1 _ |a Zeng, G.
|b 42
|0 P:(DE-HGF)0
773 _ _ |0 PERI:(DE-600)1465132-4
|a 10.1021/es0523845
|g Vol. 40, p. 3586 - 3594
|p 3586 - 3594
|q 40<3586 - 3594
|t Environmental Science & Technology
|v 40
|x 0013-936X
|y 2006
856 7 _ |u http://dx.doi.org/10.1021/es0523845
909 C O |o oai:juser.fz-juelich.de:54104
|p VDB
913 1 _ |k P22
|v Atmosphäre und Klima
|l Atmosphäre und Klima
|b Umwelt
|z fortgesetzt als P23
|0 G:(DE-Juel1)FUEK406
|x 0
914 1 _ |y 2006
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |k ICG-II
|l Troposphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB48
|x 0
970 _ _ |a VDB:(DE-Juel1)84868
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)IEK-8-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21