FORSCHUNGSZENTRUM JULICH GmbH
Zentralinstitut fur Angewandte Mathematik
D-52425 Jiilich, Tel. (02461) 61-6402

Technical Report

Dynamic Configuration of Firewalls Using
UDP Hole Punching

E. Griinter, M. Meier, R. Niederberger, F. Petri

FZJ-ZAM-IB-2006-13

August 2006
(last change: 22.08.2006)

Contents

1 Firewalls and Grid applications
1.1 Firewalls and filtering of network traffic
1.2 Grid applications and firewalls
1.3 Dynamic configuration of firewals

2 UDP hole punching
2.1 UDPHolePunching e

3 UDP hole punching in Grid environments
3.1 UDP Hole Punching in Grid environments
3.2 UDP-based Data Transfer Protocol (UDT)o ...

3.3 The overall
3.4 Summary

design. e

wwp

(620651

© o~

CONTENTS

List of Figures

1.1 FirewallsandUDP 2
2.1 UDPHolePunching e 5
2.2 UDP hole punching withnetcat 0a... 6
3.1 TCPandUDTsockets 9
3.2 UDP hole punching in Grid environments 0. 9

LIST OF FIGURES

List of Tables

Vi

LIST OF TABLES

Abstract

Firewalls separate areas of different security requirdserhis major task leads to problems rea-
garding the network connectivity and performance of vagiapplications. In particular within
distributed systems, like a Grid an unobstructed commtioicawhich is essential for using dis-
tributed ressources is not possible. Furthermore Gridigatfmins often use multiple ports dynam-
ically and in parallel. This raises the challenge of a dymaounfiguration of firewalls. Current
solutions are only isolated or proprietary solutions beeathey only address certain kinds of fire-
wall, e.g. Netfilter and Cisco PIX. This paper describes atam based on UDP hole punching.

Chapter 1

Firewalls and Grid applications

1.1 Firewalls and filtering of network traffic

Firewalls are used to divide areas of different securityiged from each other. The major task
is to prevent computing resources from unauthorized acedsnisuse. In order to achieve this
task the firewall system processes certain information kvisizised as a baseline to the forwarding
decision. The firewall administrator defines a ruleset whagresents the implementation of the
local security policy. The network traffic is divided intaaskes of packets which will be forwarded
to the destination or which will be rejected. This rulesetiibaseline to different tests, that will

be applied to each incoming packet. The firewall checks IPesm3eés and ports of the appropriate
protocol headers. Stateful packet inspection enginesarsgection states additionally.

Firewalls store state information primarily when a TCP atneis discovered because TCP is a
conection oriented protocol. Half open, established, tlafed and closed states differ from each
other. Therefore it is reasonable to differentiate whitesa connection has entered. Additionally
TCP is a reliable protocol, i.e. if any TCP segment is losirdutransfer a retransmission is trig-

gered due to missing acknowledgements discovered at thdeisérurther information can be found

at [St94].

The User Datagram Protocol (UDP) is a non reliable and nomexction oriented transport layer

protocol. The application that uses UDP has to make surdghbadata is completely transmitted.

Although no connections exist firewalls use a simple medmano feign a connection. Figure 1.1

shows a client behind a firewall sending a UDP datagram to a Bi&r outside the companies

network.

The client generates the UDP datagram and sends it to theafirg&). The firewall examines the

Sre-IP
Dst-IP[172.30.80.2]
Src-Port
10122 py poy 53 s3] 172.30.80.2
L] = "
= Hd #3 \/ T
- =
10.1.2.22034
[UDP-Feader

Figure 1.1: Firewalls and UDP

1.2. GRID APPLICATIONS AND FIREWALLS 3

datagram and forwards it to the destination (#2). Accordinthe information that has been gath-
ered the firewall adds an entry to its connection table wighg@irameters source IP address, source
port, destination IP address and destination port. Howthisrresults in a dynamic configured
access rule like

allow UDP from 172.30.80.2 port 53 to 10.1.2.2 port 2034

which is valid for a certain configurable period of time. Thide guarantees that as long as the
timeout has not been reached UDP replies from the servetd#Bg client can traverse the firewall
(#4).

Any firewall currently available uses this algorithm to mgedJDP connection and to forward
packets that belong to established UDP communicationsugtino connection exists at transport
layer using UDP.

1.2 Grid applications and firewalls

A Grid is a distributed system which makes resources availaliorm of computing power, storage
capacity and distributed data for its users. It forms anmifogeographically distributed, indepen-
dent organizations sometimes referred to as virtual osgdéiohs. The usage of available resources
takes place statically or dynamically at run-time accaydio the requirements of the user and/or
the application.

Grid applications often need high transfer rates and srasdhties. Moreover these applications
transfer large data sets which must arrive reliable andsaafapossible at the destination. Another
trait of Grid applications is the dynamic usage of connextiin parallel. GridFTP [GridFTP]
can serve as an example here, which mandates that multiéegpalata connections are always
established from the sender to the receiver.

Using multiple data connections demands that firewalls ware located between client and server
know about these data connections. There are two ways te #oily problem. First of all the
firewall can be configured statically, so that certain senae accessible on well defined port
ranges. Certainly this leads to a high number of unauthdrameess probes and enforces a high
level security on the server.

The second way is the dynamic configuration of firewalls arghduld satisfy the following de-
mands:

1. It can be integrated smoothly into an existing securitycept.
2. It represents a concept, which can be used in open soulde aommercial solutions.

3. It permits communication between the partners involvely éor the minimum necessary
duration.

The demands above need to be specified more detailed. Thddirstind guarantees that an ex-
isting security concept keeps valid. Together with the sdademand cost-intensive investments
for organizations are to be prevented. The investmentsedaied to possible acquisition of hard-
and/or software and on the new employment and /or furtharitiga of personnel. The best way
to go would be to integrate the new solution directly intosérig firewall installations. The last
demand is very important, since it is clearly demanded thawéll rules are valid only if the rules
are really used and only as long as they are used.

1.3 Dynamic configuration of firewals

Currently there are different solutions to configure a firkdgnamically. One solution i€ooper-
ative on demand opening (CODO) [Sal05]. It supports interaction with iptables figls and works

4 CHAPTER 1. FIREWALLS AND GRID APPLICATIONS

with TCP and UDP. Currently CODO was not designed to fit all glheticular requirements of a
Grid environment [Val06].

Other solutions are proprietary ones. They are offered bwéH vendors. In general vendors offer
some kind of configuration commands which identify a conioedhat has to be established before
well defined related traffic is allowed to travers the firew@he following configuration example is
given for Cisco Secure PIX Firewall Version 7.2. It allowsoections from any source IP address
to host 10.1.1.1 on destination port 2811 and allows backections from TCP ports 20000 to
25000 if a connection on TCP port 2811 is established, se&][CP

access-list permit tcp any host 10.1.1.1 eq 2811
established tcp 0 2811 permitfrom tcp 20000-25000

Although this seems to be some kind of dynamic configurati@mre are restrictions to this com-
mand: It allows return access to outbound connections dilis means that inbound connections
to a server cannot be handled by this command. Moreovessthblish command does not work
together with port address translation (PAT) which is oftead.

This document presents another approach of dynamic coafigarof firewalls. It uses a mecha-
nism comparable to UDP hole punching. In computing UDP halecping refers to a commonly
used NAT traversal technique. NAT traversal through UDRIprinching is a method for establish-
ing bidirectional UDP connections between Internet hastwrivate networks using NAT [Sch06].

Chapter 2

UDP hole punching

2.1 UDP Hole Punching

Prerequisite to use UDP hole punching is, that
o the local firewall allows outbound UDP connections
o the local firewall handles UDP connections as streams destm section 1.1.
e arelaying server exists.

The relaying server is a central part of this concept. Eanictonnects to the relaying server
using a persistent TCP connection. Simultaneously thgirgaerver gets the IP addresses of the
clients. It does not even matter if any client connects topthiglic network through a NAT device
because the public IP address is notified.

If the clients want to talk to each other they use a UDP conmectThe initiator sends a TCP
segment to the relaying server C, see figure 2.1 (#1). Itategcthat client A wants to talk to client
B using a UDP source port, e.g. 4711. The server notifiestdBahat client A has the public IP
address x.x.x.x and that it expects a UDP connection on a1t 4#2). Client B sends the preferred
UDP port, e.g. 8822 to the relaying server and simultangdtuisénds a UDP datagram from source
port 8822 to destination port 4711 to client A (#3).

Client B’s local firewall forwards the UDP datagram, creasesonnection entry and the dynamic
access rule which allows responses to travers the firewtdini\'s local firewall rejects the packet

but this does not matter at all. The relaying server C infociignt A via the existing TCP connec-

tion between A and C that client B is accessible on IP addrgssyand UDP port 8822 (#4).

Client A now sends a UDP datagram from source port 4711 to 882P Client A's local firewall
now creates the dynamic entries. However the dynamic emtBysilocal firewall is still active and
valid, so that the UDP datagram from A to B passes the firewly the communication channel

Relay server

ed B

N
#3 . .,_b g

#3 Client B

Ju

Client A

Figure 2.1: UDP Hole Punching

6 CHAPTER 2. UDP HOLE PUNCHING

is established although the static ruleset of each firewallldvnormally deny inbound connections
according to the parameters of the protocol headers.

#1

: 2

p T
o Client

Figure 2.2: UDP hole punching with netcat

The concept of UDP hole punching can easily be shown usingaheatetcat is a networking utility
which reads and writes data across network connectionsg tise TCP/IP protocol [Nc06]. It is
available on any common linux system. The server residemthehfirewall and listens on port
4711:
server# netcat -u -l -p 4711
Now a client from outside tries to connect to the UDP port 4@this server behind the firewall,
see figure 2.2(#1):
client# echo Hellg netcat -p 8822 -u server 4711
This UDP connection is not allowed by the local firewall. Th®R datagram is dropped and
nothing happens. Now the server sends a UDP datagramm tdi¢hé @utside the firewall and
punches a hole into the firewall (#2):
server# echo Hellpnetcat -p 4711 -u client 8822
After that the datagram from client to server is allowed tegpidne firewall (#3):
client# echo Hellg netcat -p 8822 -u server 4711
server# netcat -u -1 -p 4711
Hello
This simple example works on any common linux system. It catebted with different firewalls.
In our tests it worked with iptables and Cisco PIX.

Chapter 3

UDP hole punching in Grid
environments

3.1 UDP Hole Punching in Grid environments

The concept of UDP hole punching can be easily modified to bd usGrid environments. The
relaying server is changed to a relaying service. It listam& TCP connection and waits for user
connections. At connect time user and server that hostethgimg service may authenticate each
other using X.509 certificates. If the TCP connection betwibe participants has been established
data transfers can take place as described in section 2.1.

The advantage of a relaying service is obvious. The sereisides at the server host. According to
figure 2.1 in section 2.1 relay server C and client B becomes@imee host. Mutual authentication

between client and server is necessary only once at corinext if the TCP connection is estab-

lished the data transfers are allowed to start. Evenmore #re no problems resulting from NAT.

Any server accessible from the public network is exemptechfNAT algorithm and the server only

sees the public IP address of the client.

Often it is useful to transfer data using multiple parall@hections. The client has to indicate how
many connections should be used in parallel. It allocatestitkets and sends the port numbers
to the server. The server reads the information and triesitiate the maximum number of UDP
connections available by sending small UDP datagrams talteet. This may depend on the
system load. The server sends the local UDP port numberg wiémt and the client starts the data
transfers.

A new challenge raises regarding the encryption of UDP daffidc Secure Socket Layer only
works with TCP as transport protocol. Since UDP is the trartdpyer protocol in this concept we
need a way to exchange data securely. The applicable &lgorst Diffie-Hellman Key Exchange
[Sch96]. The Diffie-Hellman algorithm cannot be used to gptior decrypt data but it is used
for key distribution. Server and client are able to deriveegt kom the chosen Diffie-Hellman
parameters. This key could be used to encrypt the data. Meréowvould be useful to declare the
encryption of the data transfer as an optional feature. Bscdata is not always confidential this
could speed up the transfer.

Another approach to encrypt the transferred data could l@les symmetric algorithm. Because
the TCP connection between client and server is secured .@@9certificates the exchange of a
shared secret could be done via this channel.

The second challenge raises regarding the requirementsdéplications. Data transfers should
be fast and reliable. Because UDP has no three-way-harglsrak no acknowledgements it is
faster than TCP, but UDP is not reliable. Each UDP datagraamimstance of its own and the
application has to make sure that all the data has arrivethcirthis means that Grid applications

8 CHAPTER 3. UDP HOLE PUNCHING IN GRID ENVIRONMENTS

have to be changed. They have to use UDP and need an instangadment reliability.

An alternativ to UDP is th&/DP-based Data Transfer Protocol (UDT). UDT uses UDP as transport
protocol but it guarantees reliability in upper layer head€©f course Grid applications have to be
modified also, but the effort is very small because an APIq&kDT can be provided. Only
signatures of subroutines allocating sockets have to begeia The following section describes
UDT in general.

3.2 UDP-based Data Transfer Protocol (UDT)

Like TCP, UDP is a transport layer protocol. Besides the gaidoad UDP packets only consist
of a minimal header containing information about source destination port, packet length and
a checksum. In contrast to TCP, in a UDP header there areendifiyys or control bitsnor any
sequence or acknowledgment numbers. For that reason tteeqlrdself is not able to read a con-
nection state from a packet. Additionally it cannot recagnor interpret packet loss. Therefore
TCP features relating to a reliable and fair protocol suchsaablishing or tearing down a connec-
tion, buffering packets for a resend after loss and avoidimiggestion have to be implemented at
higher levels.

UDT is such an implementation. UDT is not a protocol of theng@ort layer like TCP or UDP. It
utilizes UDP as transport protocol and provides reliabl@cmnication and congestion control on
application layer, thus completely in user space.

There have been several earlier approaches to this cotikegBUDP or TSUNAMI, but currently
UDT appears to be the most actively maintained project.

UDT is open source and distributed under th@PL. It is designed and implemented by tNa-
tional Center for Data Mining at theUniversity of Illinois at Chicago. A first internet draft has
been released in August 2004 [Udt04]. The latest stabl@aseléncluding documentation can be
downloaded from Sourceforge [Udt06].

The UDT specific implementation for reliability and congestcontrol is realised as follows:

¢ Reliability is done by sequencing and acknowledgment. BHabH packet is assigned a
unique increasing sequence number. The receiver will saokl acknowledgments and loss
reports according to packet arrival. So lost packets willdieansmitted.

e Congestion control: unlike TCP the approach is not windowrhte based, meaning that
the algorithm does not open up the sender’s congestion winddact it reduces the inter-
packet delay of sent out packets, thus increasing its sgmdie. Congestion avoidance uses
a special case of the AIMD (Additive Increase Multiplic&ildecrease) algorithm; it reduces
the increase when getting close to the estimated link bahdwi

Besides its own congestion control algorithm UDT can al$lizatexternal or custom congestion
control algorithms likeTCP Reno or TCP BIC congestion control.

From a programmer’s point of view UDT provide€a+ API with a semantic analogue to the TCP
sockets (see figure 3.2).

e In existing applications almost all TCP socket calls can dy@aced 1:1 with socket calls
from the UDT namespace. To use UDT instead of TCP insert tree#linclude <udt.h>
in your source code, replace all socket cadx() with UDT::xxx(), recompile and link the
udt-library.

e For new applications: Just usklt.hinstead ofsocket.h For example a typical client server
sequence would then look like:
For the client:

#include<udt.h>

3.3. THE OVERALL DESIGN 9

Application
Application ubDT
Socket API Socket API
TCP UDP

Figure 3.1: TCP and UDT sockets

UDT::socket()
UDT::connect()
UDT::recv() or UDT::send()
For the server:

#include<udt.h>

UDT::socket()
UDT::bind()
UDT::listen()

UDT::accept()

Custom congestion control is provided bglass CCC The application can usgDT::setsockopt()
or UDT::getsockopt()to assign this control class to a UDT instance, and/or sgbdtameters.
Example:

UDT::setsockopt(usock, 0, UDTC, new CCCFactorgyCTCP>, sizeof(CCCFactorgCTCP>))

The above code assigns tl&CP control algorithm to a UDT socketisock meaning that this
instance would use (and behave liIRE)P Reno congestion contrgINB: utiliziing UDP underneath).

For further examples, a tutorial and a full list of all UDT fitrons and references please read the
UDT manual [Udt06].

3.3 The overall design

After the concept of UDP hole punching has been describednhandified for the usage in Grid
environments in the previous sections, the overall desigheoconcept will be explained shortly.

! . #1 AJ32666 -> BMT11 (TCP) y .

42 A32666 <> BMT11 (TCP) 8 | =l
#4 BI356T8 -> A32666 (UDP) | 1 #w | s
#6 BI4T11 -> AI32686 (TCP) |

|

#7 BI35678 <-> Af32666 (UDT)

Internal socket
communication

Server
B

Figure 3.2: UDP hole punching in Grid environments

The Grid client application at host A connects to the senastIB at a predefined port number
e.g. 4711 via As local firewall and the remote firewall at Bdedtion (#1). The specified port

10 CHAPTER 3. UDP HOLE PUNCHING IN GRID ENVIRONMENTS

has to be opened at any firewall for every host which provilssrelaying service. After mutual
authentication using X.509 certificates has been done ssitdly, data exchange using dynamic
ports can take place.

Client A and Server B exchange securely authentication atttbézation information as well as
key information for a later secure comunication with theuieeg service on this host (any grid
application, AGA) (#2).

The relaying service informs the AGA service on host B loc#ilat host A wants to connect to
servce AGA via e.g. UDP port 32666 (#3). AGA looks for a freetpmumber e.g 35678. Then
AGA sends a UDP packet to host A at port 32666 and uses as soonic85678 (#4). The packet
traverses host B’s firewallbecause outgoing UDP packetaltm@ed, but gets rejected at host A's
firewall. Nevertheless host B’s firewall assumes a "UDP stistween A/32666 and B/35678.

After the first UDP datagram has sent from host B to host A, B&EBRGA now informs host B’s
relaying service about the port to be used as destination B¥6A The relaying service informs
host A via the initial open TCP connection that AGA is waitiftgg UDP communication at port
35678 (#6).

Now host A connects to service AGA on host B with the agreed UibR 35678 and uses as
source port 32666 (#7). Hosts A and B are now able to use the-hH3Bd Data Transfer protocol
(UDT) via the established communication path (also #7). fiteevall has been opened securely
and dynamically without any firewall modifications.

3.4 Summary

Firewalls are absolute essential devices to improve thed kmcurity of an organisation. Although
their necessity is proved they lead to problems regarditgyark connectivity and performance.
Grid applications are affected by firewalls because they mégh performance and low latencies.
More often they use multiple connections in parallel to sbep the data transfer. To fit this re-
quirement of Grid applications static port ranges are condig on firewalls. Currently this is the
only solution but it leads to unauthorized accesses to thensesources. Dynamic configuration
would ease this problem.

This paper introduced a possible solution which configuréeewvall dynamically based on UDP
hole punching. The concept is modified and adjusted to thdsneleGrid environments.

An application programming interface has to be created lwiealizes the concept introduced here.
Probably this solution can be easily integrated in curremnd @pplications. The well known and
widely distributed middleware UNICORE as an example cowddrbproved to use multiple data
connections.

The described concept of Grid UDP hole punching can be seariuather step in providing solu-
tions for Grid applications dealing with existing firewallscan be easily used by most of the Grid
applications known today to overcome time delays until I'rdgnamic configurable firewalls are
available on the market.

Bibliography

[CP7] Cisco System, Inc.
Cisco Security Appliance Command Reference
For the Cisco ASA 5500 Series and Cisco PIX 500 Series, Soétwarsion 7.2.(1), Text Part
Number: OL-10086-01
Cisco Systems 2006
[GridFTP] GT4.0 GridFTP, Globus Toolkit website
http://lwww.globus.org/toolkit/docs/4.0/data/gridftaugust 2006
[Nc06] The GNU Netcat project
http://netcat.sourceforge.net/, Augusat 2006
[RFC959] RFC 959
File Transfer Protocol
http://lwww.ietf.org/rfc/rfc959.txt?number=959
[Sal05] S. Son, B. Allcock, M. Livny
CODO: Firewall Traversal by Cooperative On-Demand Opening
14th IEEE Symposium on High Performance Distributed Comgu(HPDC14), Research
Triangle Park, July 2005
http://www.cs.wisc.edu/ sschang/papers/CODO-hpdc.pdf
[Sch96] B. Schneier
Applied Cryptography Second Edition: protocols, algarit) and cource code in C
Wiley, 1996
[Sch06] J. Schmidt
Der Lochtrick - Wie Skype & Co. Firewalls umgehen
Heise Verlag, C'T 2006, Heft 17, pp. 142 ff
[St94] W. Richard Stevens
TCP/IP Illustrated I. The Protocols.
Addison Wesley 1994
[Udt04] Y. Gu, R.L. Grossmann
UDT: A transport protocol for data intesive applications
Internet Draft, draft-gg-udt-01.txt
University of lllinois at Chicago, August 2004
[Udt06] Y. Gu
UDT: UDP-based data transfer library - Version 3
http://www.cs.uic.edutygul/, May 2006
[Valo6] G.L Volpato, Ch. Grimm
Practical Tests and Experiences with CODO
D-Grid project work paper, July 2006

11

