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Mesoscopic solvent simulations: Multiparticle-collision dynamics of three-dimensional flows
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A recently developed mesoscopic solvent model with multiparticle-collision dynamics is applied to three-
dimensional solvent flows in a channel with and without a spherical obstacle. The advantage of a gravitation-
ally driven flow of the solvent over the flow induced by a pressure gradient in the calculation of the solvent
viscosity is demonstrated. Three different algorithms for stochastic collision steps are investigated and com-
pared. In particular, we have examined an alternative algorithm with relative velocities drawn from a Maxwell-
Boltzmann distribution at each collision step. This algorithm increases the numerical efficiency of the meso-
scopic model for solvent flows with low and intermediate Reynolds numbers. Our simulation results for the
recirculation length of stationary vortices behind a spherical obstacle are in good agreement with the previous
experimental measurements.
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I. INTRODUCTION

Rheology, phase behavior, stabilization, and other ph
cochemical properties of supramolecular solutions
mainly governed by the effective interactions between so
particles. Many soft matter systems, such as colloids, p
mers, or biological macromolecules are dispersed in a
lecular solvent@1#. These systems typically consist of thre
components, which are the solute~macroion! particles, the
solvent molecules, and small salt ions. When such a
matter system is subjected to an external flow field, the
fective solute-solute interactions are modified, and con
quently the nature of the medium is changed. Since the
namics of interest in such systems usually occurs on l
time scales and over large distances, a direct and full si
lation of such a complex fluid is a challenging task. The
fore, new mesoscale simulation techniques are necessa
study the dynamical behavior of these systems.

In contemporary theoretical models~integral equations
theories, density functional theory, Poisson-Boltzmann-l
theories! and numerical simulations the system is usua
coarse grained into a two-component system consisting
large colloidal particles and small salt ions. The granu
nature of the solvent is dropped whereas its electrost
screening feature is taken into account through embed
the whole system into a dielectric bath continuum. Su
coarse-grained models work very well for the static behav
of micrometer-sized colloids. For smaller particles, with
ameters in the range of 1–10 nanometers, the discretene
the electric charges and the granular nature of the sol
becomes important. The implementation of restricted mod
for the solvent~hard sphere fluid, dipolar fluid! in some ap-
plications to small colloidal systems@2–7# gives rise to pro-
nounced changes in the system characteristics compare
those obtained previously within coarse-grained models.

The modeling becomes more complicated when the
namical behavior is studied. For not too small colloidal p
ticles, as an alternative to analytical approaches based o
Stokes approximation, one is led to consider mesosco
models for the solvent dynamics which incorporate the
sential dynamical properties, but are simple enough to
1063-651X/2002/66~3!/036702~9!/$20.00 66 0367
i-
e
te
y-
o-

ft
f-
e-
y-
g
u-
-
to

e

of
r
ic
g

h
r

of
nt
ls

to

-
-
the
ic
-
e

simulated for long times and on long distance scales, suc
the lattice-Boltzmann method@8# or dissipative-particle dy-
namics @9#. A recently developed mesoscopic mod
multiparticle-collision dynamics@10,11#, was successfully
applied in Ref.@12# to the two-dimensional~2D! flow around
obstacles. Within this mesoscopic solvent method, wh
was further improved in Refs.@12,13#, the fluid is modeled
by point particles with velocities and positions as continuo
variables. The dynamics is carried out synchronously via
multaneous rotation of relative velocities of all particles in
collision volume. It was shown that the dynamics satisfi
the mass, momentum, and energy conservation laws
yields the correct hydrodynamic behavior@10#.
Multiparticle-collision dynamics provides a very promisin
approach for studying the dynamical behavior of colloid
suspensions@11#.

In this paper, the mesoscopic solvent model is applied
the three-dimensional solvent flow between planar walls
around a spherical obstacle. An advantage of a gravitat
ally driven flow over the flow forced by a pressure gradie
which has been used in the previous applications
multiparticle-collision dynamics, is addressed. We presen
detailed investigation of the dependence of the solvent
cosity on the mesoscopic system parameters. The rest o
paper is organized as follows. In Sec. II we shortly descr
the multiparticle-collision dynamics model. Section III is d
voted to simulation details. Simulation results are presen
and discussed in Sec. IV. Finally we conclude in Sec. V.

II. THE MODEL

N point particles are distributed randomly inside a 3
simulation channel of volumeLx3Ly3Lz . The positionsrW i

and velocitiesvW i , i 51,2, . . . ,N of the particles are consid
ered as continuous variables. During the time intervalsh( j
21),t,h j , wherej are positive integer numbers, the sy
tem evolves via standard streaming, hence the new par
coordinates are

rW i~ t !5rW i~ t2h!1hvW i~ t2h!. ~1!
©2002 The American Physical Society02-1
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At discrete timest5h j , stochastic collisions between so
vent particles occur in the following way. First, the system
coarse grained intons5xs3ys3zs collisional cells of vol-
ume Lx /xs3Ly /ys3Lz /zs . For simplicity we introduce a
set of integer numbers (a,b,c) such that 0<a,xs , 0<b
,ys , 0<c,zs , which completely define the cell coord
nates. For example, a cell with coordinates (0,0,0) is in
bottom left corner of the simulation box, whereas a cell w
coordinates (xs21,ys21,zs21) is in the top right corner of
the simulation box. Further, let the integer variablep denotes
the cell number,p5(a,b,c). Clearly, the variablep does not
exceed the total number of collision cellsns in the simulation
box. Suppose that, there arenp point particles in each of the
collisional cellsp. The average number~averaged over al
collisional cells! of particles per cell is,np.5N/ns5M .
Second, we define the macroscopic velocityuW p in cell p as

uW p5(
i 51

np

vW i /np . ~2!

Herei runs over all the particles belonging to considered c
p5(a,b,c). Third, the relative velocities of particles in eac
of the collision cellsp51,2, . . . ,ns , defined asvW i2uW p , i
51, . . . ,np , is stochastically rotated by an angle6a around
a randomly directed three-dimensional vectorRW p . The pro-
cedure of stochastic rotations is described in details in
Appendix.

Finally, the new velocities of particles in cellp are calcu-
lated as

vW i~ t1h!5uW p1jW i~ t !. ~3!

HerejW i is the relative velocity of particlei after the rotation,
see the Appendix.

In addition, we have examined two alternative algorith
for changing the particle velocities in the collision ste
These algorithms, which we call ‘‘random angle metho
and ‘‘random velocity method,’’ were applied to solvent flo
between planar walls and compared to the results of con
tional stochastic rotational method. Within the ‘‘rando
angle method,’’ a random set of rotational angles,ap , p
51, . . . ,ns , is generated prior to every collision step. The
the angleap is used as a rotational angle in the stochas
rotation step for all particles pertaining to cellp. The ‘‘ran-
dom velocity method’’ is assumed to be a fully stochas
procedure, with no explicit rotation of velocities. Instead,
each collisional step, we update the relative velocitiesvW i

2uW p of particles in collisional cellp by Maxwell-Boltzmann
distributed velocitiesVW i with zero average,( i 51

p VW i /np50.
Hence the new velocities of particles in a cellp after a col-
lision time t read

vW i~ t1h!5uW p1VW i~ t !. ~4!

During the collisional step, we adopted a random shift
procedure@12,13# to ensure the Galilean invariance.
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III. SIMULATION DETAILS

We consider a system consisting ofN5106 point particles
in a rectangular channel of volume 50325325, see Fig. 1.
The longest side of the simulation box~channel! is taken to
coincide with thex direction of the system, and the mass
solvent particles is set tom51. The boundary planes at th
top, y50, and bottom,y5Ly525, of the simulation box are
rigid walls with bounce-back@14# boundary conditions on
their surfaces. In thex and z directions we apply periodic
boundary conditions. At each collision step, the simulat
box is divided into 50325325 cubic cells, thusxs550, ys
525, zs525, ns531 250 and collisional cell has a volum
13131. For partially filled cells, i.e., cells which cut th
system walls, we employ the generalized bounce-back r
developed in Ref.@12#. The system temperatureT and simu-
lation time steph define the dimensionless parameterL
5 l / l c , where l 5hAkBT is the mean free path of solven
particles,kB is the Boltzmann constant, andl c51 is the lin-
ear cell size. The other system parameters are the ave
particle number per cellM and the stochastic rotational ang
a. Accordingly, our goal is to investigate the influence
these parameters onto the macroscopically measurable
trol parameter of fluid — the viscosityh of the mesoscopic
solvent. In Ref.@13# some of these dependences were de
mined for a 2D system.

It is well established that the solvent viscosity can
numerically determined in the two different ways. The fir
way, related to the Green-Kubo expression@15#, applies to
systems in thermal equilibrium, but unfortunately suffe
from large signal-to-noise ratio for the viscosity. The seco
way, which we follow in this paper, relates to systems
nonequilibrium conditions~systems with an induced flow!
where the viscosity can be calculated with high precision
this case,h is derived from the stationary one-dimension
velocity field profile of forced flow, which gives

h52
ALy

2

8vmax
. ~5!

FIG. 1. Snapshot of the simulation box filled with point~sol-
vent! particles under shear flow.
2-2
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HereA5u“W xpu is an external field that produces the flow,p
is the thermodynamic pressure in the system, andvmax is the
maximal flow velocity in the midplane of the channel. Equ
tion ~5! is a solution of the Navier-Stokes equation for Ne
tonian flow of an incompressible fluid with boundary cond
tions vx(y50)5vx(y5Ly)50. It is assumed that the
external fieldA is directed along the channel length (x direc-
tion in Fig. 1! and induces a Poiseuille flow.

There are several types of flow between parallel wa
forced, gravitational, and surface induced. The forced fl
has been considered in Refs.@10,12,13#, where the pressure
gradient is mimicked by hanging a virtual pump to the in
of the channel. Our test simulations, not shown here, rev
this method to have drawbacks — a deformation of the
velocity-field and density profiles of the particles at the in
and outlet of the channel, and a gradual density drop of
ticles along channel length. That is why any simulati
within this forced method should be carried out for lo
channels and numerical measurements have to be done i
center of the channel, where system parameters are leas
turbed.

The use of gravitationally driven flow, which is adopted
this paper, does not perturb the velocity-field profile of t
particles and their density profile along channel length,
slightly disturbs the solvent density across the cross sec
of the channel. The main advantage of this flow is its si
plicity and the possibility of direct molecular dynamic sim
lations without artificial tricks to suppress the inhomogen
ities in velocity and density profiles. In this case,A5rg in
Eq. ~5!, wherer5M / l c

3 is the solvent density. The streng
of the gravitational field can be varied by tuning the acc
eration constantg. For fixed g, a steady Poiseuille flow
quickly and self-consistently develops in the system, wh
is coupled to a thermostat@16# to keep the temperatureT
constant during the simulation run, see Fig. 2.

FIG. 2. A typical three-dimensional velocity profile for solve
Poiseuille flow between two parallel walls aty50 andy525.
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IV. SIMULATION RESULTS AND DISCUSSION

A. Poiseuille flow and solvent viscosity

We start with the discussion of the results with the infl
ence of the stochastic rotational anglea on the particle den-
sity across the channel width. Hence we fix the strength
the external field atg* 5gh/AkBT50.005 and the averag
particle number per collisional cell toM532. Simulation
results for the solvent density across the channel width
plotted in Fig. 3 for three different values ofL5 l / l c . There
is a pronounced effect ofa on the solvent density profile
r(y). For small values ofL, the density profilesr(y) ex-
hibit a common trend: with increasinga, the solvent density
at midplaner(Ly/2) decreases, whereas the density at
boundary walls,r(0) andr(Ly), increases. Less perturbe
density profiles, estimated as the difference between
maximal and minimal values, correspond to angles gre
than 90°~strong collisions!. For intermediate and large va
ues ofL, this trend becomes opposite. Now less perturb
profiles are seen for small values ofa. Such a behavior can
be understood in the following manner. The parametersa
andL affect the solvent particle dynamics in different way
The anglea is the characteristic parameter for interaction
particles within a cell. Note that the lower bounda50 cor-
responds to the case of an ideal solvent gas, i.e., the ca
freely streaming particles. The upper bounda5180°, in op-
posite, implies very strong interaction between particles i
collision cell. The second parameterL affects the correla-
tions between particles or, in other words, is a measure of
strength of induced ‘‘molecular chaos’’ in the system. T
largerL, the smaller the correlations between cell particl
since the collisional environment of each particle no long
depends on the instantaneous average velocity in a
These two parameters can be expected intuitively to be
related. This is obvious from the curves fora530° in the
upper plot and fora5150° in the lower plot of Fig. 3. Both
curves have almost identical shapes; whereas the first co
sponds to weak ‘‘interaction’’ and strong ‘‘correlation,’’ th
second corresponds to strong ‘‘interaction’’ and weak ‘‘co
relation.’’ Note that the inhomogeneity for all curves in Fi
3 is less than 10%.

Surprisingly, both alternative collision algorithms di
cussed in Sec. II yield almost identical density profiles
the solvent particles. These profiles, displayed as das
lines in Fig. 3, appear to be more stable against variation
L compared to results of the stochastic rotational metho

The one-dimensional velocity-field profiles across t
channel width are shown in Fig. 4 for two different strengt
g of the gravitational force. To avoid significant compres
ibility effects in the system, we restricted ourselves to P
seuille flows with maximal velocities of about 25% of th
speed of soundc5A2kBT. The flow field appears to be
stable along channel. For twice increased external field,g*
50.005 versusg* 50.0025, the maximal velocity of Poi
seuille flow is doubled. Thus, as follows from Eq.~5!, the
viscosity of solvent for these two runs is the same.

The next two figures reveal the dependence of the ve
ity profiles on the parametersL anda. Note that when in-
2-3
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creasing eithera ~see Fig. 5! or L ~see Fig. 6!, the flow
velocity first increases, and then decreases again. Thus
variation ofa andL, the viscosity of solvent can be tune
within a broad range of values. This is explicitly shown

FIG. 3. Normalized density profilesr* 5r(y)ys /N of solvent
particles across the channel width for three different values ofL.
From top to bottom:L50.046, 0.58, 1.16. Values of the rotation
angles a are given next to the corresponding density curv
Dashed lines with symbols are results of the alternative~random
angle and random velocity! collision models; see text for more de
tails.
03670
via

Fig. 7, where the kinematic viscosityn5h/r is plotted as a
function of the rotational anglea. There is a global mini-
mum ofn at a590° for intermediate and large values ofL.
However, for smallL the viscosityn(a) is a monotonically
increasing function ofa. Our results are in good qualitativ
agreement with the results of Ref.@13# obtained for the 2D
case. Note that there is no explicita-dependence of the ran
dom angle and the random velocity methods. Both of th
algorithms result in an identical value for the solvent visco
ity, plotted as a horizontal line for different values ofL in
Fig. 7.

Figure 8 represents the variation of the Reynolds num
Re with parametera. The minima ofn in Fig. 7 correspond

.

FIG. 4. Rescaled velocity profiles,v85v/AkBT3102, of Poi-
seuille flow for a590°, L50.58 and two dimensionless gravita
tional force strengths,g* 50.0025~left plot! andg* 50.005~right
plot!.

FIG. 5. Rescaled velocity profiles,v85v/AkBT3102, of Poi-
seuille flow for L50.58, g* 50.005 and three different values o
a. From left to right:a530°, 90°, 150°.
2-4
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MESOSCOPIC SOLVENT SIMULATIONS: . . . PHYSICAL REVIEW E 66, 036702 ~2002!
to maxima of Re5rvmaxLy /h in Fig. 8. The intriguing non-
monotonic dependence of the Reynolds number Re on
rescaled mean free path of the solvent particles,L, is drawn
separately in the inset of Fig. 8. The parameter Re achie
its maximal value Re'90 atL'0.35. the main implication
of Fig. 8 is the possibility to achieve sufficiently high Re
nolds numbers if appropriate system parameters, rotati
anglea and free path lengthL, are chosen. Our alternativ
~random angle and random velocity! collision algorithms
give Reynolds numbers of the same magnitude as the
chastic rotational method. However, they turn out to be l
suitable to produce large-Reynolds-number flows for a gi
channel geometry, as a function ofL, compared to flows
produced by stochastic collisional method; see dashed

FIG. 6. Rescaled velocity profiles,v85v/AkBT3102, of Poi-
seuille flow fora590°, g* 50.005 and three different values ofL.
From left to right:L50.046, 0.58, 1.16.

FIG. 7. Rescaled kinematic viscositynh/Ly
2 versus rotational

anglea for g* 50.005 and three different mean free pathsL. Solid
curve,L50.046~see inset!; dashed curve,L50.58; dashed-dotted
curve,L51.16. Thin horizontal lines correspond to the alternat
collision ~random angle and random velocity! models.
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with symbols in the inset of Fig. 8. This has the advanta
that large Reynolds-number flows can be studied with
having to increase the system size and thereby the numb
solvent particles too much.

Next we consider the behavior of the kinematic viscos
n with varying mean-free-path lengthL. It is seen from the
inset of Fig. 9 thatn is nearly constant in the limit of smal
free path length of solvent particles~small L), approaching
the valuen* 5nh/(Ly

2)5531024 for L→0. This finding is
in qualitative agreement with the prediction of an analytic
theory for two-dimensional stochastic fluid model@13# in the
small L limit,

n5
l c
2

12h
@12cosa#. ~6!

which yields n* 51.331024 for a590°. The asymptotic
behavior of simulatedn at largeL is phenomenologically
well described by the analytical result of Ref.@11#,

n5
L2

18h

3~12e2M !12M

e2M211M
; ~7!

see dashed line in Fig. 9.
The dependence of the Reynolds number and the k

matic viscosity on the mean particle numberM are plotted in
Fig. 10. The denser the fluid (M is also a measure of fluid
density!, the larger the Reynolds number becomes.

FIG. 8. Reynolds number Re versus rotational anglea for g*
50.005 and three different mean free pathsL, compare Fig. 7.
Solid curve,L50.046 ~see inset!; dashed curve,L50.58; dash-
dotted curve,L51.16. The inset shows Re as a function of me
free pathL for a590° andg* 50.005. Solid line, stochastic rota
tion method; dashed line, alternative collision methods.
2-5
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B. Flow around a spherical obstacle

We now apply the multiparticle-collision method to th
problem of solvent flow past a spherical obstacle. This fl
geometry is well documented in many textbooks of flu
mechanics. The applicability of the current mesoscopic s
vent model in 2D simulations of flow around obstacles h
been demonstrated in Ref.@12# for a wide range of Reynolds

FIG. 9. Rescaled kinematic viscositynh/Ly
2 as a function of

dimensionless mean free pathL for a590° andg* 50.005. Solid
lines with symbols, simulation result; dashed line, analytic result
two-dimensional flow from Ref.@11#. The inset shows a detaile
picture for small values ofL. The dashed-dotted horizontal line i
the inset is the prediction of Eq.~6! for two-dimensional flow and
small L.

FIG. 10. Reynolds number Re~solid line! and rescaled kine-
matic viscositynh/Ly

2 ~dashed line! as a function of average particl
numberM in a cell for g* 50.005 andL50.58.
03670
l-
s

numbers. The high accuracy of this method for flow p
spheres in three-dimensional flow is illustrated below.

The simulations are performed in channel of volum
15031003100, with 107 particles and blockage ratio
D/Ly50.2. We use a planar~constant! velocity-field profile
in the channel, i.e., we replace the bounce-back condition
an ordinary elastic collision of solvent particles with th
channel walls.

A typical 3D picture of flow around a sphere is depict
in Fig. 11. The flow is driven from left to right. For the sak
of clarity, only the middlez-plane velocity field is shown.
Each segment in Fig. 11 represents the orientation of
average velocity of the solvent particles in the cell located
the left end of the segment. The length of segments is p
portional to the magnitude of the velocity. More detaile
pictures of the flow at the rear part of sphere for differe
Reynolds numbers ReD5rvmaxD/h, whereD is the sphere
diameter, are shown in Fig. 12. The increase of ReD produces
a swelling of the wake area behind the sphere, see Fig
from top to bottom. At higher values of ReD a closed steady
recirculation region of vortices occurs behind the obstac
This is visible as a development of two symmetric vortices
Fig. 12. The length of this steady wake,l w , defined as dis-
tance from the rear point of the sphere to the point of z
velocity behind the obstacle, is plotted in Fig. 13 vers
ReD . The dependencel w(ReD) is monotonic, and is in very
good quantitative agreement with the experimental result
Ref. @17# and the theoretical prediction of Ref.@18#.

As a last application of mesoscopic solvent model,
influence of the embedded sphere on the effective visco
of the solvent is investigated. For such a flow with an o
stacle in channel, the application of Eq.~5! defines an effec-

r
FIG. 11. Typical snapshot for 3D flow over sphere. Only t

velocity profile across the middle ofz plane of flow channel is
shown.
2-6
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MESOSCOPIC SOLVENT SIMULATIONS: . . . PHYSICAL REVIEW E 66, 036702 ~2002!
tive viscosityhe f f , which is determined not only byh, but
also by the flow geometry. Obviously, without the obstac
he f f5h. We have measured the effective solvent viscos
he f f of flows with and without obstacle at fixed other syste
parameters. The decrease of the flow rate, seen in Fig

FIG. 12. Velocity field of solvent flow past sphere. The syste
parameters are:M58, g* 50.005, a590°. From top to bottom:
ReD524 (L51.8), ReD540 (L50.9), ReD576 (L50.35).
03670
,
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indicates the increase of the effective solvent viscosity, wh
a sphere is embedded.

V. CONCLUSIONS

We have investigated in this paper a mesoscopic sim
tion method — multiparticle-collision dynamics — in thre
dimensions, and its application to flow in a planar chan
and to flow past a sphere. The advantage of a gravitation
driven flow over a forced flow in calculating the solve
viscosity is shown. We exploit two alternative algorithms f
updating the particle velocities in the collisional step. Bo
of these algorithms, the random angle and random velo
methods, yield almost identical results for the velocity a
density profiles of solvent particles at other fixed system
rameters. Compared to the stochastic rotational method
Refs. @10,11#, the alternative collision methods yield mor
stable and homogeneous particle density profiles across
width of the flow channel. When the computational ef
ciency is concerned, the random velocity method, which
free from the rotations of velocities~see the Appendix!, ap-
pears to take less simulation time than other algorithms
the stochastic collision procedure. A rough estimate m
through simulations of solvent flow between walls shows
gain about 40% in computational time. On the other ha
our simulations reveal a disadvantage of the random velo
method for larger Reynolds flows. The reason for that is
difficulty to reduce sufficiently the viscosity of the solvent b
tuning the only free parameterL in the random velocity
method. For this purpose the second free parameter of
solvent, an explicit rotational anglea, turns out to be very
convenient. That is why, for solvent flows around sphe
where the most interesting area of investigations is lar

FIG. 13. The length of the stationary wake behind a sphere
function of the Reynolds number ReD . Filled squares—
experimental data from Ref.@17#, theoretical result from Ref.@18#
@see theoretical Eq.~16.28! there#; open circles connected with soli
line—simulation results of current work.
2-7
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E. ALLAHYAROV AND G. GOMPPER PHYSICAL REVIEW E66, 036702 ~2002!
Reynolds numbers, we employ the stochastic rotatio
method.

The results obtained show the efficiency of this mes
copic model in applications to a wide range of physical s
tems, where solvent dynamics is believed to play an esse
role. The main efficiency of the scheme derives from the f
that the solvent-solvent interactions are considered onl
discrete time intervals and modeled by a multipartic
collision rule. The collision model can easily be extended
treat more complex systems, such as charged colloid sus
sions. To simulate the hydrodynamic interaction between
charged entities in such systems, motion of small ions h

FIG. 14. The increase of the viscosityh of system with embed-
ded obstacle as seen from the drop of the flow velocity. Up
figure, ReD550; bottom figure, ReD525. The other parameters ar
g* 50.005 andL50.46.
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to be coupled to solvent dynamics through stochastic co
sion.
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APPENDIX: ROTATION OF A 3D VECTOR AROUND
A RANDOM DIRECTION

We describe here the rotation procedure of a vectovW

around a random vectorRW . The latter can be considered as
vector generated from the uniform distribution on the sphe
cal surface of radiusR51. This random vectorRW has the
components

Rx5coswA12r2, Ry5sinwA12r2, Rz5r,
~A1!

wherew52pR1 , r52R221, R1 and R2 are uncorrelated
random numbers from a uniform distribution in the interv
@0,1#.

The rotation ofvW aroundRW by an anglea is sketched in
Fig. 15. The illustrated rotation transform the vectorvW 5vW'

1vWi onto the vectorjW5«W 1vW i , where vW'RW 50 and vW iRW

5uvW iu. In order to define the vectorjW one has to calculate th
three-dimensional components of the vector«W . It is straight-
forward to split the vector«W into two components lying in
the plane that is perpendicular to the vectorRW ,

«W 5vW'cosa1~vW'3RW !sina. ~A2!

HerevW'3RW is the vector product ofvW' andRW .

r

FIG. 15. Rotation of a vectorvW around a direction given by the

unit vectorRW .
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