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Mesoscopic solvent simulations: Multiparticle-collision dynamics of three-dimensional flows
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A recently developed mesoscopic solvent model with multiparticle-collision dynamics is applied to three-
dimensional solvent flows in a channel with and without a spherical obstacle. The advantage of a gravitation-
ally driven flow of the solvent over the flow induced by a pressure gradient in the calculation of the solvent
viscosity is demonstrated. Three different algorithms for stochastic collision steps are investigated and com-
pared. In particular, we have examined an alternative algorithm with relative velocities drawn from a Maxwell-
Boltzmann distribution at each collision step. This algorithm increases the numerical efficiency of the meso-
scopic model for solvent flows with low and intermediate Reynolds numbers. Our simulation results for the
recirculation length of stationary vortices behind a spherical obstacle are in good agreement with the previous
experimental measurements.
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[. INTRODUCTION simulated for long times and on long distance scales, such as
the lattice-Boltzmann methol8] or dissipative-particle dy-
Rheology, phase behavior, stabilization, and other physinamics [9]. A recently developed mesoscopic model,
cochemical properties of supramolecular solutions arénultiparticle-collision dynamicg10,11], was successfully
mainly governed by the effective interactions between solut@pplied in Ref[12] to the two-dimension&lD) flow around
particles. Many soft matter systems, such as colloids, polyobstacles. Within this mesoscopic solvent method, which
mers, or biological macromolecules are dispersed in a movas further improved in Ref$12,13, the fluid is modeled
lecular solven{1]. These systems typically consist of three by point particles with velocities and positions as continuous
components, which are the solutmacroion particles, the variables. The dynamics is carried out synchronously via si-
solvent molecules, and small salt ions. When such a soffnultaneous rotation of relative velocities of all particles in a
matter system is subjected to an external flow field, the efcollision volume. It was shown that the dynamics satisfies
fective solute-solute interactions are modified, and consethe mass, momentum, and energy conservation laws and
quently the nature of the medium is changed. Since the dy¥ields the  correct hydrodynamic  behavior[10].
namics of interest in such systems usually occurs on londultiparticle-collision dynamics provides a very promising
time scales and over large distances, a direct and full simi@Pproach for studying the dynamical behavior of colloidal
lation of such a complex fluid is a challenging task. There-Suspensionfl1]. _ _ _
fore, new mesoscale simulation techniques are necessary to In this paper, the mesoscopic solvent model is applied to
study the dynamical behavior of these systems. the three-dimensional solvent flow between planar walls and
In contemporary theoretical modelintegral equations around a spherical obstacle. An advantage of a gravitation-
theories, density functional theory, Poisson-Boltzmann-likeally driven flow over the flow forced by a pressure gradient,
theorie and numerical simulations the system is usuallywhich has been used in the previous applications of
coarse grained into a two-component system consisting dpultiparticle-collision dynamics, is addressed. We present a
large colloidal particles and small salt ions. The granuladetailed investigation of the dependence of the solvent vis-
nature of the solvent is dropped whereas its electrostati€0sity on the mesoscopic system parameters. The rest of the
screening feature is taken into account through embeddinBaper is organized as follows. In Sec. Il we shortly describe
the whole system into a dielectric bath continuum. SucHhe multiparticle-collision dynamics model. Section Il is de-
coarse-grained models work very well for the static behavioivoted to simulation details. Simulation results are presented
of micrometer-sized colloids. For smaller particles, with di-and discussed in Sec. IV. Finally we conclude in Sec. V.
ameters in the range of 1-10 nanometers, the discreteness of

the electric charges and the granular nature of the solvent Il. THE MODEL
becomes important. The implementation of restricted models '
for the solvent(hard sphere fluid, dipolar flujdn some ap- N point particles are distributed randomly inside a 3D

plications to small colloidal systenj2—7] gives rise to pro-  sjmulation channel of volume, X L,XL,. The positions;

nounced changes in the system characteristics compared 184 velocitiess . i=12 N of the particles are consid-

those obtained previously within coarse-grained models. ... o continh’ous v’ar’iables. During the time interveis
The modeling becomes more complicated when the dy-_ 1)<t<hj, wherej are positive integer numbers, the sys-

namical behavior is §tudied. For not too small colloidal Patem evolves via standard streaming, hence the new particle
ticles, as an alternative to analytical approaches based on tr&%ordinates are '

Stokes approximation, one is led to consider mesoscopic
models for the solvent dynamics which incorporate the es- R R .
sential dynamical properties, but are simple enough to be ri(t)y=r;(t—h)+hov;(t—h). (D)
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At discrete timest=hj, stochastic collisions between sol-
vent particles occur in the following way. First, the system is
coarse grained intog=Xx X y¢X zs collisional cells of vol-
ume L, /XX Ly /ysXL,/zs. For simplicity we introduce a
set of integer numbersa(b,c) such that Gcsa<xg, 0<b

<y, 0=c<zg, which completely define the cell coordi- .
nates. For example, a cell with coordinates (0,0,0) is in the,, [
bottom left corner of the simulation box, whereas a cell with
coordinates Xs— 1ys—1,z,— 1) is in the top right corner of s [
the simulation box. Further, let the integer variapléenotes

the cell numberp=(a,b,c). Clearly, the variablg does not 10
exceed the total number of collision cefigin the simulation

box. Suppose that, there amg point particles in each of the 5 [
collisional cellsp. The average numbedaveraged over all
collisional cellg of particles per cell is<n,>=N/ng=M. 0

Second, we define the macroscopic velocﬁ'gyin cellp as

n

. P FIG. 1. Snapshot of the simulation box filled with poitsol-
Up:El Uj /np' 2 veny particles under shear flow.
=
I1l. SIMULATION DETAILS
Herei runs over all the particles belonging to considered cell . o ) ]
p=(a,b,c). Third, the relative velocities of particles in each ~ We conS|d(|ar a shysteml ccf)nS|Ist|ngN>f: 1062p°'m palr__t!clels
of the collision cellsp=1,2, ... n,, defined asy,—d,, i 1 & fectanguiar channel of volume B@5x25, see Fig. 1.
—1 n, . is stochastically rotated by an angtay argund The longest side of the simulation bgshannel is taken to
T y y coincide with thex direction of the system, and the mass of

a randomly directed three-dimensional vedRy. The pro-  gqiyent particles is set tm=1. The boundary planes at the
cedure of stochastic rotations is described in details in thrf\op y=0, and bottomy =L, =25, of the simulation box are

App?”dix- . ) ) rigid walls with bounce-back14] boundary conditions on
I Fc;nally, the new velocities of particles in cglare calcu-  heir surfaces. In the and z directions we apply periodic
ated as

boundary conditions. At each collision step, the simulation
. L box is divided into 5& 25X 25 cubic cells, thux,=50, y,
vi(t+h)=up+&(t). 3 =25, z,;=25, ng=31250 and collisional cell has a volume
1Xx1X1. For partially filled cells, i.e., cells which cut the
Hereé, is the relative velocity of particleafter the rotation, System walls, we employ the generalized bounce-back rule,
see the Appendix. de_veloped in Ref{12]. _The system tem_peratuh’eand simu-
In addition, we have examined two alternative algorithmslation time steph define the dimensionless parameter
for changing the particle velocities in the collision step.=!/lc, wherel=h\kgT is the mean free path of solvent
These algorithms, which we call “random angle method” particles kg is the Boltzmann constant, amg=1 is the lin-
and “random velocity method,” were applied to solvent flow €ar cell size. The other system parameters are the average
between planar walls and compared to the results of converparticle number per ceM and the stochastic rotational angle
tional stochastic rotational method. Within the “random a. Accordingly, our goal is to investigate the influence of
angle method,” a random set of rotational angles,, p these parameters onto the macroscopically measurable con-
=1,... N, is generated prior to every collision step. Then,trol parameter of fluid — the viscosity of the mesoscopic
the anglea, is used as a rotational angle in the stochasticsolvent. In Ref[13] some of these dependences were deter-
rotation step for all particles pertaining to cell The “ran- ~ mined for a 2D system.
dom velocity method” is assumed to be a fully stochastic It is well established that the solvent viscosity can be
procedure, with no explicit rotation of velocities. Instead, athumerically determined in the two different ways. The first
each collisional step, we update the relative velocities W&V refated to the Green-Kubo express[dS], applies to

G of particles i llisional celb by M lI-Bolt systems in thermal equilibrium, but unfortunately suffers
up of particles in collisional celp by Maxwell-Boltzmann from large signal-to-noise ratio for the viscosity. The second

distributed velocities/; with zero averageX{_,V;/n,=0.  way, which we follow in this paper, relates to systems in
Hence the new velocities of particles in a celafter a col-  nonequilibrium conditiongsystems with an induced flow

lision timet read where the viscosity can be calculated with high precision. In
this case,n is derived from the stationary one-dimensional
vi(t+h)=u,+ V(1) (4)  velocity field profile of forced flow, which gives
. . - AL2
During the collisional step, we adopted a random shifting y (5)

procedurg 12,13 to ensure the Galilean invariance. O 8Umax
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: - - IV. SIMULATION RESULTS AND DISCUSSION
A. Poiseuille flow and solvent viscosity

= We start with the discussion of the results with the influ-

gl _:.____ —_— - . —— ence of the stochastic rotational angleon the particle den-
25 f— = = ———— T T sity across the channel width. Hence we fix the strength of
e e S the external field ag* =gh/\kgT=0.005 and the average
20

particle number per collisional cell tM=32. Simulation
results for the solvent density across the channel width are
plotted in Fig. 3 for three different values &f=1/1.. There
25 is a pronounced effect ok on the solvent density profiles
20 p(y). For small values of\, the density profilep(y) ex-
15 hibit a common trend: with increasing, the solvent density
10 at midplanep(L,/2) decreases, whereas the density at the
5 z boundary wallsp(0) andp(Ly), increases. Less perturbed
o density profiles, estimated as the difference between its
maximal and minimal values, correspond to angles greater
than 90°(strong collisions For intermediate and large val-
ues of A, this trend becomes opposite. Now less perturbed
profiles are seen for small values @f Such a behavior can
be understood in the following manner. The parameters
and A affect the solvent particle dynamics in different ways.
HereA=|V,p| is an external field that produces the fiqw, The anglea is the characteristic parameter for interaction of
is the thermodynamic pressure in the System’mﬂg is the partiCleS within a cell. Note that the lower bound=0 cor-
maximal flow velocity in the midplane of the channel. Equa-responds to the case of an ideal solvent gas, i.e., the case of
tion (5) is a solution of the Navier-Stokes equation for New- freely streaming particles. The upper boume 180°, in op-
tonian flow of an incompressible fluid with boundary condi- POSite, implies very strong interaction between particles in a
tions v,(y=0)=v,(y=L,)=0. It is assumed that the c_oII|S|on cell. The _second _parametﬁr affe<_:ts the correla-
external fieldA is directed along the channel lengthdirec-  1ONS bétween particles or, in other words, is a measure of the
tion in Fig. 1) and induces a Poiseuille flow. strength of induced “molecular ghaos in the system..The
There are several types of flow between parallel Wa”S.Ja_\rgerA, the ‘.Q’ma"er the_ correlations between_cell particles,
forced, gravitational, and surface induced. The forced flow> NCe the colllsmn_al environment of each partlcl_e no longer
has been considered in Ref40,12,13, where the pressure depends on the instantaneous average ve]pcny in a cell.
S T . i .~ These two parameters can be expected intuitively to be cor-
gradient is mimicked by hanging a virtual pump to the mletr lated. This is obvious from the curves far=30° in the
of the channel. Our test simulations, not shown here, reve

this method to have drawbask— a deformation of the pper plot and fow=150" in the lower plot of Fig. 3. Both

o ) i . '© curves have almost identical shapes; whereas the first corre-
velocity-field and density profiles of the particles at the '”'etsponds to weak “interaction” and strong “correlation,” the

and outlet of the channel, and a gradual density drop of paisecond corresponds to strong “interaction” and weak “cor-

ticles along channel length. That is why any simulationre|ation.” Note that the inhomogeneity for all curves in Fig.
within this forced method should be carried out for long 3 s less than 10%.

channels and numerical measurements have to be done in the Surprisingly, both alternative collision algorithms dis-
center of the channel, where system parameters are least disissed in Sec. Il yield almost identical density profiles for
turbed. the solvent particles. These profiles, displayed as dashed
The use of gravitationally driven flow, which is adopted in lines in Fig. 3, appear to be more stable against variations of
this paper, does not perturb the velocity-field profile of theA compared to results of the stochastic rotational method.
particles and their density profile along channel length, but The one-dimensional velocity-field profiles across the
slightly disturbs the solvent density across the cross sectiochannel width are shown in Fig. 4 for two different strengths
of the channel. The main advantage of this flow is its sim-g of the gravitational force. To avoid significant compress-
plicity and the possibility of direct molecular dynamic simu- ibility effects in the system, we restricted ourselves to Poi-
lations without artificial tricks to suppress the inhomogene-seuille flows with maximal velocities of about 25% of the
ities in velocity and density profiles. In this cages=pg in  speed of sounct=2kgT. The flow field appears to be
Eq. (5), wherep=M/I2 is the solvent density. The strength stable along channel. For twice increased external figld,
of the gravitational field can be varied by tuning the accel-=0.005 versusy* =0.0025, the maximal velocity of Poi-
eration constang. For fixed g, a steady Poiseuille flow seuille flow is doubled. Thus, as follows from E®), the
quickly and self-consistently develops in the system, whichviscosity of solvent for these two runs is the same.
is coupled to a thermost4l6] to keep the temperaturé The next two figures reveal the dependence of the veloc-
constant during the simulation run, see Fig. 2. ity profiles on the parameters and «. Note that when in-

.
i ‘
il
i

t,i

\

i
Wi
| utl\\f
Wi

Sy

(=)

N

.
N N
.
2

Lo
(&)
—

o ‘I‘I[“
Sk 1“
Shuyyy

-
(4]
no
n
o
W
w
a
~
~
a
(41
o

x

FIG. 2. A typical three-dimensional velocity profile for solvent
Poiseuille flow between two parallel walls a0 andy=25.
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FIG. 4. Rescaled velocity profiles,’=u/\/kB_T>< 10?, of Poi-
seuille flow fora=90°, A=0.58 and two dimensionless gravita-
tional force strengthsgg* =0.0025(left plot) and g* =0.005 (right
0.98 plot).

Fig. 7, where the kinematic viscosity= 7/p is plotted as a
function of the rotational angle.. There is a global mini-

a=150° = _ _
E=120 mum of v at «=90° for intermediate and large values /of
094 5 10 15, 2 25 However, for smallA the viscosityr(a) is a monotonically
channel width increasing function ofv. Our results are in good qualitative

agreement with the results of R¢1.3] obtained for the 2D
case. Note that there is no explieitdependence of the ran-
dom angle and the random velocity methods. Both of these
algorithms result in an identical value for the solvent viscos-
ity, plotted as a horizontal line for different values &fin
Fig. 7.

Figure 8 represents the variation of the Reynolds number
Re with parameterr. The minima ofv in Fig. 7 correspond

25

20

0.97

10 15 20 25
channel width

FIG. 3. Normalized density profiles* =p(y)ys/N of solvent
particles across the channel width for three different valueA .of
From top to bottomA =0.046, 0.58, 1.16. Values of the rotational
angles « are given next to the corresponding density curves.
Dashed lines with symbols are results of the alternatremdom 5
angle and random velocitollision models; see text for more de-
tails.
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creasing eitherr (see Fig. 5 or A (see Fig. 6, the flow
velocity first increases, and then decreases again. Thus, via FIG. 5. Rescaled velocity profiles,’ =v/kgT X 1(?, of Poi-
variation of @ and A, the viscosity of solvent can be tuned seuille flow for A=0.58, g* =0.005 and three different values of
within a broad range of values. This is explicitly shown in «. From left to right:a=30°, 90°, 150°.
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FIG. 6. Rescaled velocity profiles,’ =v/\kgTX 1%, of Poi-
seuille flow fora=90°, g* =0.005 and three different values &f 0 = '
From left to right: A =0.046, 0.58, 1.16.
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to maxima of Re= pv ma,ly /7 in Fig. 8. The intriguing non- FIG. 8. Reynolds number Re versus rotational angléor g*

monotonic dependence of the Reynolds number Re on the0.005 and three different mean free paths compare Fig. 7.

rescaled mean free path of the solvent particlesis drawn  Solid curve, A =0.046 (see inset dashed curveA=0.58; dash-

separately in the inset of Fig. 8. The parameter Re achievedptted curve A=1.16. The inset shows Re as a function of mean

its maximal value Re90 atA ~0.35. the main implication free pathA for «=90° andg* =0.005. Solid line, stochastic rota-

of Fig. 8 is the possibility to achieve sufficiently high Rey- tion method; dashed line, alternative collision methods.

nolds numbers if appropriate system parameters, rotational

anglea and free path lengtiA, are chosen. Our alternative with symbols in the inset of Fig. 8. This has the advantage

(random angle and random velogitgollision algorithms  that large Reynolds-number flows can be studied without

give Reynolds numbers of the same magnitude as the st@raving to increase the system size and thereby the number of

chastic rotational method. However, they turn out to be lessolvent particles too much.

suitable to produce large-Reynolds-number flows for a given Next we consider the behavior of the kinematic viscosity

channel geometry, as a function &f, compared to flows , with varying mean-free-path length. It is seen from the

produced by stochastic collisional method; see dashed lingset of Fig. 9 that is nearly constant in the limit of small
free path length of solvent particlésmall A), approaching

40 2 the valuev* = vh/(L7)=5x10"* for A—0. This finding is
in qualitative agreement with the prediction of an analytical
el 09 theory for two-dimensional stochastic fluid modi&8] in the
\ o) small A limit,
30 £\ ~ 06
) RN 2
\ ~ Ic

5L\ Soap V=11~ cosa]. (6)
) \
= 20\ 0 ' . ' .
o A \ 3 60 90 120 150 180
~J o (degrees) which yields v*=1.3x10"4 for «=90°. The asymptotic
= 15} ; ; i ;
-~ \ behavior of simulatedy at large A is phenomenologically
> L \. e well described by the analytical result of Rgf1],

10 P ~ Pt

—-\-\- —————— >~\—‘-—-—-—-—-—-——/-;—4'— --------
| \\ b S -
5 N AZ 3(1—e M)+2M .
—————— ittt depededed—t—t Lottt bttt )= —
: ' : : 8 e M_1+M
30 60 90 120 150 180
o, (degrees)

FIG. 7. Rescaled kinematic viscositgh/Li versus rotational
anglea for g* =0.005 and three different mean free pathsSolid

see dashed line in Fig. 9.
The dependence of the Reynolds number and the kine-

curve, A =0.046(see inset dashed curveA =0.58; dashed-dotted Matic viscosity on the mean particle numidémare plotted in
curve,A=1.16. Thin horizontal lines correspond to the alternative Fig. 10. The denser the fluidV is also a measure of fluid
collision (random angle and random velogityodels.

density, the larger the Reynolds number becomes.
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lines with symbols, simulation result; dashed line, analytic result for

two-dimensional flow from Ref[11]. The inset shows a detailed

FIG. 11. Typical snapshot for 3D flow over sphere. Only the

picture for small values oA. The dashed-dotted horizontal line in velocity profile across the middle of plane of flow channel is

the inset is the prediction of E@6) for two-dimensional flow and
small A.

B. Flow around a spherical obstacle

We now apply the multiparticle-collision method to the
problem of solvent flow past a spherical obstacle. This flo
geometry is well documented in many textbooks of fluid
mechanics. The applicability of the current mesoscopic sol
vent model in 2D simulations of flow around obstacles has

been demonstrated in R¢f.2] for a wide range of Reynolds

[e23
o
T
i

b

Re, vi/L’> 10

—_——
—_——
—
~——

N
o
T

5 15 25 35

FIG. 10. Reynolds number Resolid line) and rescaled kine-
matic viscosityuh/L§ (dashed lingas a function of average particle
numberM in a cell forg* =0.005 andA =0.58.

W,

shown.

numbers. The high accuracy of this method for flow past
spheres in three-dimensional flow is illustrated below.

The simulations are performed in channel of volume
150X 100X 100, with 10 particles and blockage ratio
D/L,=0.2. We use a plandrconstank velocity-field profile
in the channel, i.e., we replace the bounce-back condition by

an ordinary elastic collision of solvent particles with the
channel walls.

A typical 3D picture of flow around a sphere is depicted
in Fig. 11. The flow is driven from left to right. For the sake
of clarity, only the middlez-plane velocity field is shown.
Each segment in Fig. 11 represents the orientation of the
average velocity of the solvent particles in the cell located at
the left end of the segment. The length of segments is pro-
portional to the magnitude of the velocity. More detailed
pictures of the flow at the rear part of sphere for different
Reynolds numbers Re= pv a2/ 7, whereD is the sphere
diameter, are shown in Fig. 12. The increase of Beoduces
a swelling of the wake area behind the sphere, see Fig. 12
from top to bottom. At higher values of Bea closed steady
recirculation region of vortices occurs behind the obstacle.
This is visible as a development of two symmetric vortices in
Fig. 12. The length of this steady wakg,, defined as dis-
tance from the rear point of the sphere to the point of zero
velocity behind the obstacle, is plotted in Fig. 13 versus
Re,. The dependenck,(Re,) is monotonic, and is in very
good quantitative agreement with the experimental results of
Ref.[17] and the theoretical prediction of R¢f.8].

As a last application of mesoscopic solvent model, the
influence of the embedded sphere on the effective viscosity
of the solvent is investigated. For such a flow with an ob-
stacle in channel, the application of E§) defines an effec-
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FIG. 13. The length of the stationary wake behind a sphere as a
function of the Reynolds number Re Filled squares—
experimental data from Ref17], theoretical result from Ref18]

[see theoretical Eq16.28 therd; open circles connected with solid
line—simulation results of current work.

indicates the increase of the effective solvent viscosity, when
a sphere is embedded.

V. CONCLUSIONS

We have investigated in this paper a mesoscopic simula-
tion method — multiparticle-collision dynamics — in three
dimensions, and its application to flow in a planar channel
and to flow past a sphere. The advantage of a gravitationally
driven flow over a forced flow in calculating the solvent
viscosity is shown. We exploit two alternative algorithms for
updating the particle velocities in the collisional step. Both
of these algorithms, the random angle and random velocity
methods, yield almost identical results for the velocity and
density profiles of solvent particles at other fixed system pa-
rameters. Compared to the stochastic rotational method of
Refs.[10,11], the alternative collision methods yield more
stable and homogeneous particle density profiles across the
width of the flow channel. When the computational effi-
ciency is concerned, the random velocity method, which is
free from the rotations of velocitiesee the Appendijx ap-
pears to take less simulation time than other algorithms for
the stochastic collision procedure. A rough estimate made

parameters arevl =8, g* =0.005, «=90°. From top to bottom:
Rey=24 (A=1.8), Rgy=40 (A=0.9), Rg=76 (A=0.35).

tive viscosity e¢s, Which is determined not only by, but

gain about 40% in computational time. On the other hand,
our simulations reveal a disadvantage of the random velocity
method for larger Reynolds flows. The reason for that is the
difficulty to reduce sufficiently the viscosity of the solvent by
tuning the only free parametex in the random velocity

also by the flow geometry. Obviously, without the obstacle, method. For this purpose the second free parameter of the
netf= 7. We have measured the effective solvent viscositysolvent, an explicit rotational anglke, turns out to be very
nett Of flows with and without obstacle at fixed other systemconvenient. That is why, for solvent flows around sphere,
parameters. The decrease of the flow rate, seen in Fig. 1éhere the most interesting area of investigations is larger
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o —H—F——+—F——"F—F—+—F— FIG. 15. Rotation of a vectar around a direction given by the
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X unit vectorR.
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e = = = = to be coupled to solvent dynamics through stochastic colli-
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e — e — APPENDIX: ROTATION OF A 3D VECTOR AROUND
20 frmee T ee—— A RANDOM DIRECTION
B = == @ @ @== We describe here the rotation procedure of a veotor
0 B= — — == —_— around a random vectd®. The latter can be considered as a
— p— = ey e vector generated from the uniform distribution on the spheri-
= = = = = cal surface of radiu®R=1. This random vectoR has the
o F : I; - E I; . Ir- : components
6 5 10 15 20 25 30 35 40 45 50

X

R(=cosp\1-p? Ry=singyl—-p* R,=p,

FIG. 14. The increase of the viscosityof system with embed- (A1)

ded obstacle as seen from the drop of the flow velocity. Upper
figure, Rg =50; bottom figure, Rg=25. The other parameters are Where p=27R;, p=2R,—1, R; andR;, are uncorrelated
g* =0.005 andA =0.46. random numbers from a uniform distribution in the interval

[0,1].
The rotation ofv aroundR by an anglex is sketched in
Reynolds numbers, we employ the stochastic rotationalFig 15. The illustrated rotation transform the vector v |
method. +UH onto the vectoré=¢+v|, wherev, R=0 and vR
The results obtained show the efficiency of this mesos— |”H| In order to define the vectdrone has to calculate the
copic model in applications to a wide range of physical SYSihree-dimensional components of the veatot is straight-

tems, where solvent dynamics is believed to play an essentl?l dt lit th ¢ to tw s |
role. The main efficiency of the scheme derives from the fac orward to split the vectoe into wo components ying in

that the solvent-solvent interactions are considered only df€ plane that is perpendicular to the vedior
discrete time intervals and modeled by a multiparticle-
collision rule. The collision model can easily be extended to
treat more complex systems, such as charged colloid suspen-
sions. To simulate the hydrodynamic interaction between all
charged entities in such systems, motion of small ions havelerev, X R is the vector product of, andR.

£=Ji008a+(5LXF§)Sina. (A2)
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