000000543 001__ 543
000000543 005__ 20180208232905.0
000000543 0247_ $$2DOI$$a10.1149/1.2977717
000000543 0247_ $$2WOS$$aWOS:000259528200045
000000543 0247_ $$2ISSN$$a0013-4651
000000543 0247_ $$2ISSN$$a0096-4743
000000543 0247_ $$2ISSN$$a0096-4786
000000543 0247_ $$2ISSN$$a1945-7111
000000543 037__ $$aPreJuSER-543
000000543 041__ $$aeng
000000543 082__ $$a540
000000543 084__ $$2WoS$$aElectrochemistry
000000543 084__ $$2WoS$$aMaterials Science, Coatings & Films
000000543 1001_ $$0P:(DE-Juel1)VDB50077$$aWatanabe, T.$$b0$$uFZJ
000000543 245__ $$aGrowth behavior of atomic-layer-deposited Pb(Zr,Ti)Ox thin films on planar substrate and three-dimensional hole structures
000000543 260__ $$aPennington, NJ$$bElectrochemical Society$$c2008
000000543 300__ $$aD715
000000543 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000000543 3367_ $$2DataCite$$aOutput Types/Journal article
000000543 3367_ $$00$$2EndNote$$aJournal Article
000000543 3367_ $$2BibTeX$$aARTICLE
000000543 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000000543 3367_ $$2DRIVER$$aarticle
000000543 440_0 $$03889$$aJournal of the Electrochemical Society$$v155$$x0013-4651
000000543 500__ $$aThe authors thank Dr. A. Besmehn (ZCH, FZJ) for XPS analysis, W. Krumpen (ZCH, FZJ) for XRF analysis, M. Gebauer and M. Gerst (IFF-IEM, FZJ) for their technical support, D. Esser and Dr. H.- J. Penkalla (IEF-2, FZJ) for FIB lamellae preparation, F. Dorn and Dr. T. Weirich (GFE, RWTH Aachen) for STEM and HRTEM analysis, and L. Cattaneo, S. Carella (SAES Getters S. p. A), and Dr. Y. Tasaki (Toshima MfG Co., Ltd.) for fruitful discussions. SAES Getters S. p. A is gratefully acknowledged for supplying the precursors. The 3D substrates were kindly provided by Samsung Advanced Institute of Technology. T. W. also extends thanks to the Alexander von Humboldt Stiftung (AvH) for awarding him a research fellowship. This collaboration with CSH was supported by AvH.
000000543 520__ $$aQuaternary Pb(Zr, Ti)O-x (PZT) films were deposited at 240 degrees C by a combination of liquid-injection atomic layer deposition (ALD) of binary PbO, TiOx, and ZrOx thin films. In preliminary work, binary ZrOx films were deposited at 240 degrees C by ALD. Two solutions of Zr(C9H15O2)(4) [Zr(DIBM)(4)] and Zr(C11H19O2)(4) [Zr(DPM)(4)] dissolved in ethylcyclohexane (ECH) were prepared, and it was found that the Zr(DIBM)(4) solution provides a three-times-higher deposition rate for the ZrOx films than the Zr(DPM)(4) solution. We focused the study on the set of precursors which offers the highest degree of flexibility for adjusting the Zr/(Zr + Ti) ratio in the PZT films: Pb(C11H19O2)(2) [Pb(DPM)(2)], Ti[OCH(CH3)(2)](4) [Ti(Oi-Pr)(4)], and Zr(DIBM)(4) dissolved in ECH, and water as the oxidant. This set of solutions contributed to increasing the Zr/(Zr + Ti) ratio in the deposited PZT films to more than 0.2, which remained below 0.1 in the ALD-PZT using Pb(DPM)(2), Ti(Oi-Pr)(4), and Zr(DPM)(4). The Zr/(Zr + Ti) ratio was further increased to 0.5 by modifying the sequence of the discrete-source gas pulses. A polarization-voltage hysteresis loop was observed for a 70 nm thick PZT film deposited on a planar substrate after postannealing for crystallization. To assess the feasibility of ALD as a tool for coating three-dimensional (3D) structures uniformly, PZT films were deposited on submicrometer 3D structures. As-deposited amorphous PZT films as well as crystallized PZT films were both free of any gradient in the cation composition over the structure. The present work reports interesting interactions on stacking different binary-oxide layers by ALD and demonstrates why the multiprecursor ALD process is a promising approach for uniformly coating 3D nanostructures with complex oxide materials. (C) 2008 The Electrochemical Society.
000000543 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000000543 588__ $$aDataset connected to Web of Science, Pubmed
000000543 650_7 $$2WoSType$$aJ
000000543 7001_ $$0P:(DE-Juel1)VDB3102$$aHoffmann-Eifert, S.$$b1$$uFZJ
000000543 7001_ $$0P:(DE-HGF)0$$aHwang, C. S.$$b2
000000543 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3$$uFZJ
000000543 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1.2977717$$gVol. 155, p. D715$$pD715$$q155<D715$$tJournal of the Electrochemical Society$$v155$$x0013-4651$$y2008
000000543 8567_ $$uhttp://dx.doi.org/10.1149/1.2977717
000000543 909CO $$ooai:juser.fz-juelich.de:543$$pVDB
000000543 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000000543 9141_ $$y2008
000000543 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000000543 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0
000000543 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000000543 970__ $$aVDB:(DE-Juel1)101162
000000543 980__ $$aVDB
000000543 980__ $$aConvertedRecord
000000543 980__ $$ajournal
000000543 980__ $$aI:(DE-Juel1)PGI-7-20110106
000000543 980__ $$aI:(DE-82)080009_20140620
000000543 980__ $$aUNRESTRICTED
000000543 981__ $$aI:(DE-Juel1)PGI-7-20110106
000000543 981__ $$aI:(DE-Juel1)VDB881