001     54326
005     20180211164538.0
024 7 _ |2 pmid
|a pmid:17120524
024 7 _ |2 DOI
|a 10.1080/15226510600846723
024 7 _ |2 WOS
|a WOS:000240701200001
037 _ _ |a PreJuSER-54326
041 _ _ |a eng
082 _ _ |a 580
084 _ _ |2 WoS
|a Environmental Sciences
100 1 _ |a Azaizeh, H.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Phytoremediation of selenium using subsurface-flow constructed wetland
260 _ _ |a Philadelphia, Pa.
|b Taylor & Francis
|c 2006
300 _ _ |a 187 - 198
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a International Journal of Phytoremediation
|x 1522-6514
|0 16082
|y 8
|v 1
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The potential of two plant species, Phragmites australis (common reed) and Typha latifolia (cattail), in the phytoremediation process of selenium (Se) was studied in subsurface-flow constructed wetland (SSF). Se was supplemented continuously at a concentration of 100 microg Se L(-1) in the inlet of the cultivation beds of the SSF. Water samples collected from the outlet of the Phragmites bed after 1, 3, 6, 9, and 12 wk of treatments showed that Se content was under detectable limits. Water samples collected from the Typha bed at the same five periods showed that Se concentrations in the outlet were 55, 47, 65, 76, and 25 microg/L, respectively. The results of bioaccumulation in the biomass of both species after 12 wk of treatment indicated that Typha plants accumulated Se mainly in fine roots. Phragmites accumulated Se mainly in leaves and rhizomes, and moderate levels were found in stems and fine organic materials. The results indicate that common reed is a very good species for Se phytoextraction and phytostabilization (immobilization) and that cattail is only a phytostabilization species. The use of common reed and cattail for Se phytoremediation in a SSF system and in constructed wetland models are discussed.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Biodegradation, Environmental
650 _ 2 |2 MeSH
|a Biomass
650 _ 2 |2 MeSH
|a Plant Leaves: metabolism
650 _ 2 |2 MeSH
|a Plant Roots: metabolism
650 _ 2 |2 MeSH
|a Plant Stems: metabolism
650 _ 2 |2 MeSH
|a Poaceae: metabolism
650 _ 2 |2 MeSH
|a Rhizome: metabolism
650 _ 2 |2 MeSH
|a Selenium: metabolism
650 _ 2 |2 MeSH
|a Typhaceae: metabolism
650 _ 2 |2 MeSH
|a Water Movements
650 _ 2 |2 MeSH
|a Wetlands
650 _ 7 |0 7782-49-2
|2 NLM Chemicals
|a Selenium
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a subsurface-flow constructed wetland (SSF)
653 2 0 |2 Author
|a phytoremediation
653 2 0 |2 Author
|a wetland plants
653 2 0 |2 Author
|a Typha
653 2 0 |2 Author
|a Phragmites
700 1 _ |a Salhani, N.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB1374
700 1 _ |a Sebesvari, Z.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Shardendu, S.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Emons, H.
|b 4
|0 P:(DE-HGF)0
773 _ _ |a 10.1080/15226510600846723
|g Vol. 8, p. 187 - 198
|p 187 - 198
|q 8<187 - 198
|0 PERI:(DE-600)2094255-2
|t International journal of phytoremediation
|v 8
|y 2006
|x 1522-6514
909 C O |o oai:juser.fz-juelich.de:54326
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-III
|l Phytosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB49
|x 0
970 _ _ |a VDB:(DE-Juel1)85113
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)ICG-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21