000054491 001__ 54491
000054491 005__ 20240712084519.0
000054491 0247_ $$2DOI$$a10.1063/1.2179610
000054491 0247_ $$2WOS$$aWOS:000235553300090
000054491 0247_ $$2Handle$$a2128/17281
000054491 037__ $$aPreJuSER-54491
000054491 041__ $$aeng
000054491 082__ $$a530
000054491 084__ $$2WoS$$aPhysics, Applied
000054491 1001_ $$0P:(DE-Juel1)VDB5910$$aStiebig, H.$$b0$$uFZJ
000054491 245__ $$aStanding-wave spectrometer
000054491 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2006
000054491 300__ $$a083509
000054491 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000054491 3367_ $$2DataCite$$aOutput Types/Journal article
000054491 3367_ $$00$$2EndNote$$aJournal Article
000054491 3367_ $$2BibTeX$$aARTICLE
000054491 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000054491 3367_ $$2DRIVER$$aarticle
000054491 440_0 $$0562$$aApplied Physics Letters$$v88$$x0003-6951
000054491 500__ $$aRecord converted from VDB: 12.11.2012
000054491 520__ $$aA standing-wave sensor was developed which facilitates the miniaturization of Fourier spectrometers down to the micrometer scale. The spectrometer concept is based on sampling a standing wave by an ultrathin and partially transmissive sensor. The active region of the sensor has a thickness of 30 nm-40 nm. The standing wave is created in front of a tunable mirror. Varying the position of the mirror results in a phase shift of the standing wave, a modulation of the intensity profile within the ultrathin sensor, and thus, in a modulation of the photocurrent. The spectral information of the incoming light can be determined by the Fourier transform of the sensor signal. The operation principle of the spectrometer is described and the influence of the device design on the spectral resolution of the spectrometer is discussed. Due to the simple linear setup of the sensor and the tunable mirror, the realization of one- and two-dimensional spectrometer arrays is feasible. (c) 2006 American Institute of Physics.
000054491 536__ $$0G:(DE-Juel1)FUEK401$$2G:(DE-HGF)$$aErneuerbare Energien$$cP11$$x0
000054491 588__ $$aDataset connected to Web of Science
000054491 650_7 $$2WoSType$$aJ
000054491 7001_ $$0P:(DE-HGF)0$$aKnipp, D.$$b1
000054491 7001_ $$0P:(DE-Juel1)156447$$aBunte, E.$$b2$$uFZJ
000054491 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.2179610$$gVol. 88, p. 083509$$p083509$$q88<083509$$tApplied physics letters$$v88$$x0003-6951$$y2006
000054491 8567_ $$uhttp://dx.doi.org/10.1063/1.2179610
000054491 8564_ $$uhttps://juser.fz-juelich.de/record/54491/files/1.2179610.pdf$$yOpenAccess
000054491 8564_ $$uhttps://juser.fz-juelich.de/record/54491/files/1.2179610.gif?subformat=icon$$xicon$$yOpenAccess
000054491 8564_ $$uhttps://juser.fz-juelich.de/record/54491/files/1.2179610.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000054491 8564_ $$uhttps://juser.fz-juelich.de/record/54491/files/1.2179610.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000054491 8564_ $$uhttps://juser.fz-juelich.de/record/54491/files/1.2179610.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000054491 909CO $$ooai:juser.fz-juelich.de:54491$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000054491 9131_ $$0G:(DE-Juel1)FUEK401$$bEnergie$$kP11$$lErneuerbare Energien$$vErneuerbare Energien$$x0
000054491 9141_ $$y2006
000054491 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000054491 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000054491 9201_ $$0I:(DE-Juel1)VDB46$$d31.12.2006$$gIPV$$kIPV$$lInstitut für Photovoltaik$$x0
000054491 970__ $$aVDB:(DE-Juel1)85314
000054491 9801_ $$aFullTexts
000054491 980__ $$aVDB
000054491 980__ $$aConvertedRecord
000054491 980__ $$ajournal
000054491 980__ $$aI:(DE-Juel1)IEK-5-20101013
000054491 980__ $$aUNRESTRICTED
000054491 981__ $$aI:(DE-Juel1)IMD-3-20101013
000054491 981__ $$aI:(DE-Juel1)IEK-5-20101013