001     54491
005     20240712084519.0
024 7 _ |a 10.1063/1.2179610
|2 DOI
024 7 _ |a WOS:000235553300090
|2 WOS
024 7 _ |a 2128/17281
|2 Handle
037 _ _ |a PreJuSER-54491
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Stiebig, H.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB5910
245 _ _ |a Standing-wave spectrometer
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2006
300 _ _ |a 083509
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Applied Physics Letters
|x 0003-6951
|0 562
|v 88
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a A standing-wave sensor was developed which facilitates the miniaturization of Fourier spectrometers down to the micrometer scale. The spectrometer concept is based on sampling a standing wave by an ultrathin and partially transmissive sensor. The active region of the sensor has a thickness of 30 nm-40 nm. The standing wave is created in front of a tunable mirror. Varying the position of the mirror results in a phase shift of the standing wave, a modulation of the intensity profile within the ultrathin sensor, and thus, in a modulation of the photocurrent. The spectral information of the incoming light can be determined by the Fourier transform of the sensor signal. The operation principle of the spectrometer is described and the influence of the device design on the spectral resolution of the spectrometer is discussed. Due to the simple linear setup of the sensor and the tunable mirror, the realization of one- and two-dimensional spectrometer arrays is feasible. (c) 2006 American Institute of Physics.
536 _ _ |a Erneuerbare Energien
|c P11
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK401
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Knipp, D.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Bunte, E.
|b 2
|u FZJ
|0 P:(DE-Juel1)156447
773 _ _ |a 10.1063/1.2179610
|g Vol. 88, p. 083509
|p 083509
|q 88<083509
|0 PERI:(DE-600)1469436-0
|t Applied physics letters
|v 88
|y 2006
|x 0003-6951
856 7 _ |u http://dx.doi.org/10.1063/1.2179610
856 4 _ |u https://juser.fz-juelich.de/record/54491/files/1.2179610.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/54491/files/1.2179610.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/54491/files/1.2179610.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/54491/files/1.2179610.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/54491/files/1.2179610.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:54491
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P11
|v Erneuerbare Energien
|l Erneuerbare Energien
|b Energie
|0 G:(DE-Juel1)FUEK401
|x 0
914 1 _ |y 2006
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |k IPV
|l Institut für Photovoltaik
|d 31.12.2006
|g IPV
|0 I:(DE-Juel1)VDB46
|x 0
970 _ _ |a VDB:(DE-Juel1)85314
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013
981 _ _ |a I:(DE-Juel1)IEK-5-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21