000054558 001__ 54558
000054558 005__ 20240712100859.0
000054558 0247_ $$2DOI$$a10.1029/2006JD008334
000054558 0247_ $$2WOS$$aWOS:000251878700001
000054558 0247_ $$2ISSN$$a0141-8637
000054558 0247_ $$2Handle$$a2128/20423
000054558 037__ $$aPreJuSER-54558
000054558 041__ $$aeng
000054558 082__ $$a550
000054558 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000054558 1001_ $$0P:(DE-HGF)0$$aTilmes, S.$$b0
000054558 245__ $$aEvaluation of heterogeneous processes in the polar lower stratosphere in WACCM3
000054558 260__ $$aWashington, DC$$bUnion$$c2007
000054558 300__ $$aD24301
000054558 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000054558 3367_ $$2DataCite$$aOutput Types/Journal article
000054558 3367_ $$00$$2EndNote$$aJournal Article
000054558 3367_ $$2BibTeX$$aARTICLE
000054558 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000054558 3367_ $$2DRIVER$$aarticle
000054558 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v112$$x0148-0227
000054558 500__ $$aRecord converted from VDB: 12.11.2012
000054558 520__ $$aChemical ozone loss in the polar lower stratosphere is derived from an ensemble of three simulations from the Whole Atmosphere Community Climate Model (WACCM3) for the period 1960-2003, using the tracer-tracer correlation technique. We describe a detailed model evaluation of the polar region by applying diagnostics such as vortex temperature, sharpness of the vortex edge, and the potential of activated chlorine (PAC1). Meteorological and chemical information about the polar vortex, temperature, vortex size, and activation time, and level of equivalent effective stratospheric chlorine, are included in PAC1. Discrepancies of the relationship between chemical ozone loss and PAC1 between model and observations are discussed. Simulated PAC1 for Antarctica is in good agreement with observations, owing to slightly lower simulated temperatures and a larger vortex volume than observed. Observed chemical ozone loss of 140 +/- 30 DU in the Antarctic vortex core are reproduced by the WACCM3 simulations. However, WACCM3 with the horizontal resolution used here (4 x 5) is not able to simulate the observed sharp transport barrier at the polar vortex edge. Therefore the model does not produce an homogeneous cold polar vortex. Warmer temperatures in the outer region of the vortex result in less chemical ozone loss over the entire polar vortex than observed. For the Arctic, WACCM3 temperatures are biased high (by 2-3 degrees in the annual average) and the vortex volume and chlorine activation period is significantly smaller than observed. WACCM3 Arctic chemical ozone loss only reaches 20 DU for cold winters, where observations suggest approximate to 80-120 DU.
000054558 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000054558 588__ $$aDataset connected to Web of Science
000054558 650_7 $$2WoSType$$aJ
000054558 7001_ $$0P:(DE-HGF)0$$aKinnison, D. E.$$b1
000054558 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b2$$uFZJ
000054558 7001_ $$0P:(DE-HGF)0$$aSassi, F.$$b3
000054558 7001_ $$0P:(DE-HGF)0$$aMarsh, D. R.$$b4
000054558 7001_ $$0P:(DE-HGF)0$$aBoville, B. A.$$b5
000054558 7001_ $$0P:(DE-HGF)0$$aGarcia, R. R.$$b6
000054558 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2006JD008334$$gVol. 112, p. D24301$$pD24301$$q112<D24301$$tJournal of geophysical research / Atmospheres $$tJournal of Geophysical Research$$v112$$x0148-0227$$y2007
000054558 8567_ $$uhttp://dx.doi.org/10.1029/2006JD008334
000054558 8564_ $$uhttps://juser.fz-juelich.de/record/54558/files/2006JD008334.pdf$$yOpenAccess
000054558 8564_ $$uhttps://juser.fz-juelich.de/record/54558/files/2006JD008334.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000054558 909CO $$ooai:juser.fz-juelich.de:54558$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000054558 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000054558 9141_ $$y2007
000054558 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000054558 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000054558 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000054558 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000054558 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000054558 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000054558 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000054558 9201_ $$0I:(DE-Juel1)VDB790$$d30.09.2010$$gICG$$kICG-1$$lStratosphäre$$x1
000054558 970__ $$aVDB:(DE-Juel1)85396
000054558 9801_ $$aFullTexts
000054558 980__ $$aVDB
000054558 980__ $$aConvertedRecord
000054558 980__ $$ajournal
000054558 980__ $$aI:(DE-Juel1)IEK-7-20101013
000054558 980__ $$aUNRESTRICTED
000054558 981__ $$aI:(DE-Juel1)ICE-4-20101013
000054558 981__ $$aI:(DE-Juel1)IEK-7-20101013