
16 17Autumn 2006  •  Vol.  4 No. 2  •  inSiDE

Projects Projects

Autumn 2006  •  Vol.  4 No. 2  •  inSiDE

Figure 1: Two examples of inefficient program behavior; one for point-to-point communication  
(Late Sender) and one for collective operations (Wait at N x N)

Introduction
To satisfy their increasing demand for 
computing power, advanced numerical 
simulations are required to harness 
larger numbers of processors offered 
by modern capability computing sys-
tems, such as the IBM BlueGene/L 
system JUBL at Forschungszentrum 
Jülich. Unfortunately, satisfactory 
speedup on many thousands of proces-
sors is extraordinarily hard to achieve. 
Sustained application performance is 
often significantly below the theoreti-
cal limit and leaves substantial room 
for optimization. However, tools that 
normally assist developers in the op-
timization process cease to work in a 
satisfactory manner when deployed on 
large processor counts. 

Event tracing has been a well-estab-
lished technique for post-mortem per-
formance analysis of parallel applica-
tions. Time-stamped events, such as 
entering a function or sending a mes-
sage, are recorded at runtime and ana-
lyzed afterwards with the help of soft-
ware tools. In this context, automatic 
off-line trace analyzers, such as the 
EXPERT tool from the KOJAK toolset 
[1], can conveniently provide relevant 
information by automatically searching 
traces for complex patterns of inef-
ficient behavior and quantifying their 
significance. In addition to usually being 
faster than a manual analysis, this ap-
proach is also guaranteed to cover the 
entire event trace and not to miss any 
pattern instances.

However, as the size of parallel sys-
tems and the number of processors 

used by individual applications rises, 
the traditional approach of sequentially 
analyzing a single global trace file be-
comes increasingly constrained by the 
large number of events. A new project 
aimed at overcoming these limitations, 
SCALASCA [2], started at the begin-
ning of 2006 in a Helmholtz-University 
Young Investigators Group established 
between Forschungszentrum Jülich and 
RWTH Aachen University.

In this article, we outline how the pat-
tern search can be done in a more scal-
able way by exploiting both distributed 
memory and parallel processing capa-
bilities available on modern large-scale 
systems and discuss first empirical 
results. For a more detailed discussion, 
the interested reader may refer to [3].

Parallel Analysis Approach
Instead of sequentially analyzing a 
single and potentially large global trace 
file, we analyze multiple local trace files 
in parallel based on the same paral-
lel programming paradigm as the one 
used by the application under investiga-
tion. For simplicity, we currently have 
restricted ourselves to handle only 
single-threaded MPI-1 applications. The 
analyzer, which is an MPI application in 
its own right, is executed on as many 
CPUs as the target application. This al-
lows the user to run it after the target 
application within a single batch job, 
which avoids additional waiting time in 
the batch queue. The parallel analyzer 
uses a distributed memory approach, 
where each process reads only the 
local trace data that were recorded 
for the corresponding process of the 

target application. This addresses scal-
ability specifically with respect to larger 
numbers of processes. Since the size 
of local traces can be limited by selec-
tive tracing – i.e., by recording events 
only for code regions and time intervals 
of particular interest – we assume that 
the local trace data can be completely 
held in the main memory of the com-
pute nodes. This has the advantage 
of having efficient random-access to 
individual events, whereas this is often 
not the case when dealing with a global 
trace file.

The actual analysis can then be accom-
plished by performing a parallel replay 
of the application‘s communication 
behavior. The central idea behind this 
approach is to analyze a communica-
tion operation using an operation of the 
same type. For example, to analyze a 
point-to-point message, the event data 
necessary to analyze this communica-
tion is also exchanged in point-to-point 
mode between the corresponding 
analysis processes. To do this, the new 
analysis traverses local traces in paral-
lel and meets at the synchronization 
points of the target application by re-
enacting the original communication.

The replay-based analysis approach can 
be used to search for a large number 

of inefficiency patterns. Our current 
prototype supports all but one rarely 
significant MPI-1 pattern offered by the 
original sequential EXPERT tool. Two 
examples of these patterns are dia-
grammed in Figure 1. Their detection 
algorithms will be used to illustrate the 
parallel analysis mechanism below.

As an example of inefficient point-to-
point communication, consider the 
so-called Late Sender pattern. Here, 
a receive operation is entered by one 
process before the corresponding send 
operation has been started by the 
other. The time lost is therefore the 
difference between the timestamps of 
the enter events of the MPI function in-
stances which contain the correspond-
ing message send and receive events. 
The complete Late Sender pattern con-
sists of four events, specifically the two 
enter events and the respective mes-
sage send and receive events.

During the parallel replay, the detec-
tion of this performance problem is 
triggered by the point-to-point com-
munication events involved (i.e., send 
and receive). That is, when a send 
event is found by one of the processes, 
a message containing this event and 
the associated enter event is cre-
ated. This message is then sent to 

Scalable Parallel Trace-Based 
Performance Analysis

time

lo
ca

tio
n

Receive

Send

time

lo
ca

tio
n

Allreduce

Allreduce

Allreduce

Late Sender Wait at NxN



18 Autumn 2006  •  Vol.  4 No. 2  •  inSiDE 19Autumn 2006  •  Vol.  4 No. 2  •  inSiDE

ProjectsProjects

• Markus Geimer1

• Felix Wolf1,2

• Brian J.N. Wylie1

• Bernd Mohr1

1  John von Neumann 
Institut für 
Computing (NIC) 
Forschungs-
zentrum Jülich

2  Fachgruppe 
Informatik  
RWTH Aachen

Figure 2: Wall-clock execution times for SMG2000 analysis using the new prototype at a range of 
scales. Linear scaling is the bold dotted line

Figure 3: Analysis report for ASC 
SMG2000 on 16,384 processors of 
BlueGene/L highlighting the distribution of 
the Wait at N x N performance metric on 
the physical machine topology distribution 
(left) and MPI process topological distribu-
tion (right) for a particular call path

the process representing the receiver 
using a point-to-point operation. To 
ensure the correct matching of send 
and receive events, equivalent tag and 
communicator information are used to 
perform the communication.

When the receiver reaches the receive 
event, the aforementioned message 
containing the remote constituents of 
the pattern is received. Together with 
the locally available constituents (i.e., 
the receive and the enter events), a 
Late Sender situation can be detected 
by comparing the timestamps of the 
two enter events and calculating the 
time spent waiting for the sender.

The second important type of commu-
nication operations are MPI collective 
operations. As an example of a related 
performance problem, consider the 
detection of the Wait at N x N pattern, 
which quantifies the waiting time due to 
the inherent synchronization in N-to-N 
operations, such as MPI_Allreduce.

While traversing the local trace data, 
all processes involved in a collective op-
eration will eventually reach their cor-
responding collective exit events. After 
verifying that it relates to an N-to-N 
operation, accomplished by examining 

the associated region identifier, the 
analyzer invokes the detection algo-
rithm, which determines the latest of 
the corresponding enter events using 
an MPI_Allreduce operation. After 
that, each process calculates the local 
waiting time by subtracting the time-
stamp of the local enter event from the 
timestamp of the enter event obtained 
through the reduction operation. The 
group of ranks involved in the analysis 
of the collective operation is easily de-
termined from the communicator of 
the original collective operation.

Results
To evaluate the effectiveness of paral-
lel analysis based on a replay of the 
target application‘s communication be-
havior, a number of experiments with 
our current prototype implementation 
have been performed at a range of 
scales. Measurements were taken on 
the 8-rack IBM BlueGene/L system 
JUBL using a dedicated partition con-
sisting of all of the compute nodes for 
the parallel analyses.

Figure 2 charts wall-clock times for the 
analysis of ASC benchmark SMG2000 
traces with a range of process num-
bers (the 8-fold doubling of process 
numbers necessitates a log-log scale 

to show the corresponding range of 
times). The figure shows the total 
time needed for the parallel analysis 
(including trace reading and writing a 
complete analysis report) and the time 
taken by the parallel replay itself with-
out file I/O. Due to the often consider-
able variation in the time for file I/O 
(e.g., depending on overall file-system 
load) the times reported are the best 
of several measurements.

The parallel replay for the largest 
set of execution traces from 16,384 
SMG2000 processes, amounting to 
over 40,000 million events (230 GBytes 
of trace files), took less then 3 minutes. 
With the latest improvements for 
merging the analysis results (in com-
parison to [3]), which is reflected in the 
curve showing the total analysis time, 
the full analysis for 16,384 processes 
completed in less than 30 minutes. 
Although the overall analysis time is 
dominated by file I/O, the new approach 
is orders of magnitude faster than 

the corresponding sequential analysis 
carried out by the EXPERT tool, thereby 
enabling analyses at scales that have 
been previously inaccessible. A screen-
shot with analysis results for 16,384 
processes is shown in Figure 3.

References
[1] Wolf, F.,  Mohr, B.
  Automatic performance analysis of hybrid 

MPI/OpenMP applications, 
Journal of Systems Architecture 49(10-11), 
pp. 421-439, 2003

[2] http://www.scalasca.org

[3]  Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.
  Scalable Parallel Trace-Based Performance 

Analysis, Proceedings EuroPVM/MPI 2006, 
Springer LNCS 4192, pp. 303-312, 2006

128 256 512 1024 2048 4096 8192 16384
Processes

10

100

1000

W
al

l t
im

e 
(s

)

Total analysis
Parallel replay


