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Abstract

Herein, we present analytical solutions for the electronicenergy eigenvalues of the hydrogen molec-
ular ion H

�� , namely the one-electron two-fixed-center problem. These are given for the homonu-
clear case for the countable infinity of discrete states whenthe magnetic quantum number	 is zero
i.e. for

� 
�
states. In this case, these solutions are the roots of a set oftwo coupled three-term

recurrence relations. The eigensolutions are obtained from an application ofexperimental mathe-
maticsusing Computer Algebra as its principal tool and are vindicated by numerical and algebraic
demonstrations. Finally, the mathematical nature of the eigenenergies is identified.

PACS: 31.15.-p, 31.15.Ar, 02.70.Wz, 31.50.Bc, 31-50.Df
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1 Introduction

Although, there are well established software packages in the area of quantum chemistry such
as GAUSSIAN [1], MOLPRO [2] and GAMESS [3] which allow to obtain approximate numerical
solutions to a number of fair sized molecules, the simplest molecule namely the hydrogen molecular
ion, a quantum mechanical three-body problem, still remains mathematically intractable.

In the fixed nuclei approximation, it is well known that the Schrödinger wave equation - a second
order partial differential equation (PDE) - of the problem of one electron moving in the field of
two fixed nuclei can be separated in prolate-spheroidal coordinates [4]. These coordinates allow
a separation of variables that results in two non-trivial ordinary differential equations (ODE), and
hence two eigenparameters: the energy parameter� �

, and a separation constant� related to the
total orbital angular momentum and the Runge-Lenz vector.

We note that asymptotic expansions for small or large internuclear distances
 have been obtained.
A very comprehensive presentation of the energy eigenvalues for the ground state and a number
of exited states is shown in the work ofČı́žeket al. [9]. These could almost constitute analytical
solutions but the resulting series are divergent though asymptotic [10] and therefore useful only at
large internuclear distances. Another complication is that for the homonuclear case, everygerade
energy�� (wave function symmetric under exchange of nuclei) has a counterpartungeradesolution
(wave function antisymmetric under exchange of nuclei) whose energy�� has exactly the same��
 expansion. This makes the calculation of exchange energy splittings � � � �� � �� very
elusive to calculate at large
 , although there are specialized methods for recovering these splittings
(e.g. see [11]).

Even recently, there has been examination of series in small
 limited to the ground state short-
range interaction energy [12] but we still have no further insight into the actual mathematical nature
governing the energy eigenvalues. We also cite the work of Demkov et al. [13] but their analytical
solutions correspond to a peculiar charge ratio depending on the internuclear distance and therefore
not physically useful.

Thus, complete analytical solutions of the eigenstates of H
�� , in areas of molecular interest, such as

e.g. the region near the equilibrium internuclear distance(bond length) of the ground state remain
elusive.

A wide variety ofnumericalmethods have been used to solve the H
�� problem in this case. For

example, Bates, Ledsham and Stewart [5] used recursion and continued fractions. Hunter and
Pritchard [6] used matrix methods and Rayleigh quotient iteration. Madsen and Peek [7] used power
series and associated Legendre expansions to set up two equations whose simultaneous solution
then gave the two eigenparameters. An accurate way to obtainenergies and wavefunctions for the
one-electron two-center problem is provided by the programODKIL conceived by Aubert-Frécon
et al. [14, 15] based on a method by Killingbeck. As of the 1980s, it was possible to calculate the
eigenenergies and the eigenfunctions of the discrete states of H

�� with a rapid FORTRAN program.
Yet, complete analytical solutions have so far remained elusive: the classical� -body problem
cannot be solved in closed form for� � � and the quantum counterpart is even worse by virtue of
being an eigenvalue problem.

The approach used here is called “experimental mathematics”, an unorthodox approach involving
multi-disciplinary activities by which to find new mathematical patterns and conjectures. The goal
in this context is to search and find mathematical structuresand patterns to be re-examined with
more “rigor” at a later stage. The level of rigor is of course relative: in dealing with a difficult
problem in applied Mathematics, we cannot approach the level of rigor demanded in number theory.
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Nonetheless, we desire demonstrations sufficiently convincing to the molecular physicist.

The present work will involve a combination of methods, results and procedures from different
areas. We first start with results from what is called:dimensional scaling. It has been known
for some time that the Schrödinger wave equation can be generalized to an arbitrary number of
dimensions� which can be subsequently treated as continuous variable [17, 18]. In the limit as� � ��

, the hydrogen molecular ion becomes the double well Dirac Delta function model which
can be solved exactly [25] in terms of theLambert W function[19,20]. Dimensional scaling applied
to H

�� has been studied at length by Hershbach’s group [21–24], in particular, by Frantz [21], Loeser
and Lopez-Cabrera [22, 23]. The latter work provides even more insight into the mathematical
relationship between the real H

�� at � � � and its one-dimensional limit.

Next, armed with the information provided by dimensional scaling, we will return to the real three-
dimensional formulation of Aubertet al. [15]. This formulation is re-examined using a Computer
Algebra System (CAS) within the approach of experimental mathematics: patterns and results are
obtained. The CAS used is Maple because it is readily available to us but the results could also be
implemented on other systems. The resulting series expansions are verified numerically and alge-
braically. In particular, we will demonstrate that our results are independent of choice of basis and
basis size and consequently completely general. The end-result will be then analytically compared
with the one-dimensional result and put on a near equal footing allowing us to find the mathemat-
ical category to which belong the eigenvalues of H

�� . In view of the type of solution obtained, a
tentative “physical” picture is associated with the analytical solutions. A summary with concluding
remarks is made at the end.

2 Preliminaries - Dimensional Scaling

The� � ��
version of H

�� [17,18] is given by the double Dirac delta function model:� �� � ��� �� � �  ! �� � " #! �� � 
 �$� � � �#��
(1)

where%& � � and %' � # �. The ansatz for the solution has been known since the work of
Frost [26]: � � � ()* +, + " - ()* +, ). + (2)

Matching of
�

at the peaks of the Dirac delta functions positioned at
� � / � 
 when

�# � ��
yields:0000 � � 1 �()*.� ()*. � � 1 0000 � / (3)

and the energies are thus given by:� 2 � �1�2 ��
where 12 � �  � 3 ()*4 . $

(4)

Although, the above has been known for more than half a century, it was not until Scottet al. [25]
that the solution for12 was exactly found to be:12 � � " 5 �3 �
 ()6. ��
 (5)

where
3

represent respectively the symmetric orgeradesolution and the anti-symmetric orunger-
adesolution and

5
is the Lambert W function satisfying

5 �7�(8 9:; � 7
[19,20]. This function first

introduced by Johann Heinrich Lambert (1728-1777), a contemporary of Euler, has been “invented”
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and “re-invented” at various periods in history but its ubiquitous nature was not fully realized within
the last decade or so.

For example, the
5

function appears in Wien’s Displacement Law of Blackbody radiation. In
general, it has appeared in electrostatics, statistical mechanics, general relativity, radiative transfer,
quantum chromodynamics, combinatorial number theory, fuel consumption and population growth
etc. . . (e.g. see ref. [27] and references herein).

More recently, the Lambert
5

function has also appeared in “linear” gravity two-body problem [28]
as a solution to the Einstein Field equations with one spatial dimension and one time dimension�� " ��

. The present work also includes a generalization of the
5

function. Recent work [30] shows
that the

5
function can be further generalized to express solutions totranscendental algebraic

equations of the form:

<=> �3 ? � � � @ A �� �B C �� � (6)

where
@ A �� �

and
B C �� �

are polynomials in
�

of respectively degrees� andD and
?

is a constant.
The standard

5
function applies for cases when� � �

andD � / and expresses solutions for
the case of equal charges for eq. (1) or equivalently the caseof equal masses for the two-body� " �

linear gravity problem. The case ofunequalcharges or unequal masses corresponds to cases
of higher � and D values. This form also expresses a subset of the solutions tothe three-body
linear gravity problem [29,30] where one deals with transcendental equations of the form (6) whereD � � � E .

Some insight into the mathematical nature of the eigenenergies of H
�� is revealed by the fact that

the eigensolutions for the electronic energies at� � ��
and� � E actually bound the� � �

ground state eigenenergy of H
�� [21,22] as shown in Figure 1. Moreover, the latter can be estimated

by a linear interpolation formula [23]:

� F �
 � G �� � H � .F � " �� � I �� .F �
(7)

This formula agrees with the numerically accurate eigenenergy (as given by program ODKIL or
the work of D. Frantz) to within about 2 or 3 digits for the range of R near the bond length. The
result at� � E involves the extrema of a Hamiltonian expression [23, eq.(58)]. We re-examined
this result. One has to consider a region of
 divided by 
 J � KL M �. For 
 N 
 J, the root is
determined by the root of a quartic polynomial [23] and the result for 
 O 
 J is determined by a
sixth degree polynomial. Thus, the result at� � E is algebraic. On the other hand, the result at� � ��

is in terms of an implicit special function, which is the Lambert
5

function. Given how
well this interpolation formulation works, this already suggests what is the mathematical nature of
the eigenenergies of the true hydrogen molecular ion

�� � ��
.

We can state this in view of the work of Frantzet al. [21] who showed that the� -dimensional
problem could be decoupled into two coupled ODEs for

� P � N E and how a particular energy
eigenvalue for a given� could exactly express the solution of another eigenvalue for an excited
state at a dimension� " �

through a precise re-scaling.
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3 Three-dimensional HQR
3.1 Starting Formulation

The Schrödinger Wave Equation for H
�� in atomic units is given by:S� " � T%&U& " %'U' V " �� W � � / (8)

As mentioned before, this is separable into prolate-spheroidal coordinates:X � �U& " U' ��
 � � P X N EY � �U& � U' ��
 � � � P Y P �/ P Z P �[\H � 
 �%& � %' �\� � 
 �%& " %' �
We can write the ansatz for the eigensolution:� �X � Y � Z� � ] �X �D �Y � Z� � ] �X �^ �Y �(2_` a

(9)

which allow us to obtain two coupled ODEs:S �� Y T�� � Y � � �� Y V � 	 �� � Y � " � �Y � � \H Y � �W D �Y � Z� � / (10)S �� X T�X � � �� �� X V � 	 �X � � � � � �X � " \� X " �W ] �X � � /
where� is the separation constant and the eigenenergy� is expressed as:� bcbJ � � � � �
 � (11)

Note that: def
.g h � � �i �i " ��

(12)def
.g h � � � / (13)

Although the set of quantum numbers
�j � i � 	 �

- theunitedatom quantum numbers - can be used to
identify the eigenstates, as is the case for e.g. program ODKIL, it must be emphasized that only the
magnetic quantum number	 is a good quantum number (resulting from the azimuthal symmetry
of H

�� about its internuclear axis).

We follow the treatment of Aubertet al. [15] and consider the following basis expansion for theY
coordinate: D �Y � Z� � klm` nl̀ o l̀ �Y � Z�

(14)

whereo l̀ are the Spherical Harmonics. Injection of the above basis into the ODE governingD
in Y leads to the creation of a symmetric matrixp whose determinant must vanish when� and�
satisfy the eigenvalue problem:  p �� � � �$ qn q � / (15)



3. THREE-DIMENSIONAL H
�� 7

where r_ s_ �� � � � � �t �t " �� " � � T�t� � �	 � " �t � ���t " �� ��t � �� V � � �r_� Hs_ �� � � � � �
 \H T �t " 	 " ���t � 	 " ����t " �� ��t " �� V Hu� �r _�� s_ �� � � � � � ���t " �� T �t " 	 " ���t � 	 " ���t " 	 " ���t � 	 " ����t " �� ��t " v� V Hu� �
are the non-vanishing matrix elements ofp . If

\H � %& � %' � / i.e. the homonuclear case,
then the pentadiagonal matrixp divides inevenandodd tridiagonal matrices in terms of

�
where� � � �

with no explicit dependence on the internuclear distance
 (although this is not true for
the other ODE in

X
). For the

X
coordinate, we use a basis of Hylleraas functions, i.e. in terms of

Laguerre polynomials:] �X � � ()w 9x )H;  �� �X � ��$` u� kym` u� zy )9` u�; { ỳ ) 9` u�;  �� �X � ��$
(16)

 | �� � � �$ qz q � / (17) | �� � � �$ �  \ �� � � �$ " � 	 �  } �� �$)H
where ~_ s_ �� � � �� " �t " ��~_ s_� H �� � � ~_� Hs_ �� � � � ��t � 	� " �� �t " 	� " ��� Hu�
and U_ s_ �� � � � � ��t " �� T
 \��� � t � � � �� V " 	 �� " t " 
 \� � � � " � �U_� Hs_ �� � � � � � ��t � 	� " �� �t " 	� " ��� Hu� � T
 \��� � t � �VU_ s_� H �� � � � � U_� Hs_ �� � � � �
When	 � /, the matrix is tridiagonal. For	 �� /, one has to consider the inverse of the matrix

}
,

which is not a band matrix.

Of course, we realize that this choice of basis is only one of several possible choices. The results
obtained are valid provided the results are independent of the size of the basis and the choice of
basis.

3.2 Recurrence Relations

The following relations apply to the homonuclear case and when 	 � / in which case, the band
matrices are purely tridiagonal matrices. These are governed by recurrence relations namely

�� ���
and

�� ���
of reference [15]:�<�  � h$ � ��<�  � H$ � � HsH�<�  � l $ � � l sl �<�  � l )H$ � � l )Hsl � l sl )H �<�  � l )�$
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Thus for	 � /, we have the following:�<� �| h � � ��<� �| H� � 
� � � � � � " � 
 � � � " � (18)�<� �| l� H� � T�� � " �� T
� � � � � � � � V " � " � 
 � � � " � V �<� �| l �
��� T
� � �V � �<� �| l )H�

For the eveni case, we have:�<� �p <h � � ��<� �p < H� � � �� � ��<� �p <l� H� � ��� � �� � " �� " � � �� �� " � � � ���� � � �� �� � " �� � � � �<� �p <l �
�� � � �� � � ��� � � �<� �p <l )H��� � � ��� �� � � �� �� � " �� (19)

Defining
�<� �p �_ � � �<� �p �t��

for the oddi case, we have:�<� �p �h � � ��<� �p � H� � �� " �� �v � ��<� �p �l� H� � ��� ��� " �� ��� " �� " � � �� ��� " ��� " � " ������ " v� ��� " �� � � �� �<� �p �l �
�� � � � � ��� " ��� �<� �p �l )H���� " ��� ��� � �� ��� " �� (20)

Note that the radial equations for the hydrogen atom are governed by two-term recurrence relations.
Thus, it suffices to find an eigenenergy such that the coefficient �l� H of the basis of Laguerre
functions is zero. This in effect truncates the infinite series into a polynomial and consequently
closed form solutions for the eigenstates are obtained of the hydrogen atom. This is not possible for
H

�� which is governed bythree-term recurrence relations no matter what the choice of basis.

The band matrices for H
�� and their determinants have been injected into a computer algebra system.

The determinants
�<� �| _ � and

�<� �p _ � (even or odd) fort � �� � � � � � �
are multivariate polynomial-

like in � and� . The determinants
�<� �p _ � are true polynomials in� and� �

. On the other hand,
although

�<� �| _ � is a polynomial in� , it has also negative powers for� and thus akin to a Laurent
series (Laurent polynomial) in� .

It is possible to eliminate one of the unknowns by obtaining aresultantof the two determinants�<� �| _ � and
�<� �p _ �. If � and

~
are polynomials over an integral domain, where et 2 (rational)

polynomial equations in 2 unknowns� and� .� � �y y�_m H�� � �_ � ~ � ~` �̀_m H�� � �_ �
Then �<��d���� �� � ~ � � � � �ỳ ~ỳ y�_m H �̀  m H��_ � �  �
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This can be computed from the Euclidean algorithm or determinant of aSylvestermatrix and its
roots will be common to those satisfying the original set of polynomials. Since both expressions
are true polynomials in� only, the resultant must be in� . E.g. fort � �

(i.e.
� � �

matrices)�<��d���� ��<� �| _ � � �<� �p <_ � � � � �¡�� ���v � L " v �����v � ¢ � �v¡���v �
 � �£� � ¤ � ������v �v¡ 
 � �¡¥� � ¦" ¡����v ��¥ �� � �/�£ 
 " �£ 
 � � � � " �����v ���v�/ � ¥�/v 
 " ¥�� 
 � � � F� �����v ���/ 
 F � �££�/ " ��/ �/ 
 � vv£ � 
 � � � � � ¡��£ ��/ 
 F � ��� 
 �" �� � 
 � �¡ �� � � � ����£ 
 F " �¥¥¡��£ 
 � " �¡ 
 � � ���/ 
 " �/�" �¡�£ 
 ��� 
 F � ��£ 
 � " £¥ � 
 � �v���� " � 
 � ��/ 
 � � �/� 
 " �v��� �" � 
 F �� 
 � ¥��� F " � 
 � �� �
i.e. a Laurent polynomial in� with coefficients in
 only. When the size of thet � t increases,
the size of the resulting expression increases dramatically (expression swell). However, from a
numerical point of view, the most useful outcome comes from numerically solving the simultaneous
expressions for

�<� �| _ �
and

�<� �p _ � sincet must be sufficiently large to give a sufficiently good
result near the bond length. In Maple, this can be done using the fsolve procedure. To find the
minimum energy for the ground state, it is a matter of gettingderivatives of these determinants with
respect to
 . Combining the latter with the condition:� �§� 
 � / where �§ � � bcbJ " ��
 (21)

we get five equations in the five unknowns
 , � , � , ¨&¨ . and ¨w¨ . . The result has been calculated
using a small Maple program. In atomic units, these are:
 � ��¥¥£ �¥�� �¥¥¡¥¥¥� � � �� ` _y_` �` � �/ �¡/�¡��¡ �¥ �/¡v�¥� � � �
Note that the electronic energy, evaluated at
 � � �/ a.u. for comparison, is as expected exactly
the reference tabulated value of Madsen and Peek [7] i.e.�/ �¡/�¡��� ���¥�¥

. An indirect way
of ascertaining the accuracy of electronic energies is to use these values in an adiabatic standard
scheme to obtain vibrational energies which are directly comparable to highly accurate values pro-
vided by approaches that do not involve the separability of the electronic and nuclear motions (e.g.
[31–33] and [34,35]). This has been done [36] and comparisons with values from the literature are
displayed in table 3.2.

In fact, given how heavy the nuclear centers are with respectto the electron, clamping the nu-
clear centers is a very good approximation for the quantum three-body problem represented by H

��
with the following caveat: the approximation that the nuclei are clamped fixed in space creates a
symmetry under exchange of nuclei in the homonuclear case. Adifferent picture arises when the
movement of nuclei is considered. The mere movement of the nuclei breaks the symmetry under
exchange of nuclei and thereby leads to a localization of thestates. In this case, the work of Esry
and Sadeghpour is instructive [37].

However, if one stopped here, there is no pattern from an analytical point of view. E.g. setting� � � �
and examining

�<� �p <_ �
at low order in� , we have:

at t � �
: ���v � � ��£/ " � � � � " �¡ � ¡�£ � � �� " © �� � �

at t � �: v�� � � � ����� � ��¡ � � " � � � " �� ��/ " ����� � � � v�� � � �� " © �� � �
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Table 1: Ground State Vibrational Energies
Energies are in a.u., differences in cmª« (1 a.u. = 219474.63 cmª« )
a) ref. [31], b) ref. [32], c) ref. [33], d) ref. [34], e) ref. [35]

Quantum Present Differences
System Vibrational Adiabatic Literature � �

Number¬ Values Values (cm)H)
H

�� 0 -0.597138471 -0.597139055­; -0.13
-0.597139063123®; -0.13

1 -0.587154167 -0.587155679212®; -0.33

D
�� 0 -0.598788594 -0.5987876(11)­; +0.22

-0.598788784331J; -0.04

HD
�

0 -0.597897521 -0.5978979685*; -0.10
-0.5978979686b; -0.10

at t � �: ����£ � � ��� �¡� �¡/ " �£�� �¡ � � � �££� � � " £ � ¤ �" �v/�/ � �/�� � � " ¡�v¡�¥v � � � ����� � ¤ �� " © �� � �
If we look at � � / and grab the leading coefficient� �

, we have the sequence�£/ � ���� � �� �¡� �¡/ � � �
. Not only are the coefficients increasing dramatically in size, they also

alternate in sign. Although the roots� �� of these determinants
�<� �| _ � and

�<� �p _ � converge
with increasingt, the actual coefficients of these determinants and especially those of the resultant
increase in size becoming more and more cumbersome althougha CAS can handle them (up to a
point).

Moreover, we have made a particular choice of basis and the combined set of polynomial-like ex-
pressions for the determinants though numerically useful could be viewed more as a computational
“model” rather than anything truly representative of the wave function. If we stop here, we see no
pattern. Insight comes frominverting the problem.

3.3 Roots of Determinants

The three-term recurrence relations for
�<� �| _ � or

�<� �p _ � cannot be solved in closed form. We
start with

�<� �p _ � because it is easier and has no explicit dependence on
 . Upon careful scrutiny
of eqs. (19) and (20), the term in

�<� �p l )H�
has a coefficient in� � whereas the term in

�<� �p l �
has terms at order� �

. Let us assume that� is small, which is indeed the case for small
 . We can
therefore neglect the last term in

�<� �p l )H�
and the resulting two-term recurrence relation becomes

trivial to solve. It is merely a matter of compounding the multiplicative terms of the recursion:�<� �p <l � G �� ��l l )H�  mh T� ¯ �� ¯ " �� " � � �� ¯ � " � ¯ � �� � ��� ¯ � �� �� ¯ " �� V (22)
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Solving for� such that
�<� �p <l � � / yields:� � � �¯ ��¯ " �� " �¯ � " �¯ � ���¯ � �� ��¯ " �� � � " © �� � �

(23)

We can clearly identify the
 � / limit with i � � ¯
. Similarly, for the odd case, we have:�<� �p �l � G �� ��l l )H�  mh T� �¯ " �� �� ¯ " �� " � � ��¯ � " ��¯ " ��� ��� ¯ " v� �� ¯ " �� V (24)

� � � ��¯ " �� ��¯ " �� " �¯ � " ��¯ " ���¯ " �� ��¯ " v� � � " © �� � �
(25)

We can clearly identify the
 � / limit with i � � ¯ " �
. Thus, althoughi is only a valid quantum

number in the united atom limit, it is nonetheless feasible to use it to identify an eigenstate as an
expansion for small� (and small R).

By the implicit function theorem,
�<� �p _ � � / ° � � � �� � �

. Moreover, the structure of
the recurrence relations for

�<� �p _ � and
�<� �| _ � namely eqs. (19), (20) and (18) tell us that all

these quantities aret:± degree polynomials in� . If one can find all the values of� such that
these determinants are zero, the latter are clearly known bythe fundamental theorem of algebra. If�<� �p _ � as a formal series in

�
where

� � � �
, we can usereversionof power series to obtain an

analytical solution. This is the best possible analytical result. E.g. , we consider:� � ²�� �� � ° � � ²�� �� � � #
where

# � �
(26)� " �� �F " v�� �¦ " � � � � #° � � # � �� #F " ���� #¦ " � � �

The reverted series of
�

in terms of
#

can be obtained in a number of ways including Lagrange’s
method [4] and represents the best possible representationof an analytical solution to the root of
eq. (26). Formally, the infinite series in

#
is a complete solution. The issue of getting numbers

for e.g.
# � �

is a matter of a summation technique. Solutions by reversionof power series are
possible via Maple’ssolve command. E.g. inverting

�<� �p <F �
yields:��� � " ���v �� " © ��F � � �¡ " ��� � � � ¥�¥�¡ � �� " © ��F � �

��/ " �¥££ � � ��£ �v �� " © ��F �
where

� � � �
. To first order in

�
(or � �

), we recover the solutions in eq. (23) for respectivelyi � / � � � �. The action of inverting
�<� �p <_ � producest solutions to order

© ��_ �. E.g. if we isolate
thei � / solution obtained from

�<� �p <_ � for t � � � � � v � ¡
, we obtain:t � � ³ ��� � " ���v �� " © ��F �t � � ³ ��� � " ���v �� " ��v/v �F " © ��� �t � v ³ ��� � " ���v �� " ��v/v �F � �¡�¥ ��¡�v �� " © ��¦ �

(27)t � ¡ ³ ��� � " ���v �� " ��v/v �F � �¡�¥ ��¡�v �� � ¥��£��¥££v �¦ " © ��¤ �´ ´ ´ ´ ´´ ´ ´ ´ ´´ ´ ´ ´ ´t � E ³ ��� � " ���v �� " ��v/v �F � �¡�¥ ��¡�v �� � ¥��£��¥££v �¦ " � � �
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What is important to note is that the coefficients arestable! Letting t � t " �
adds a term of order© ��_� H�

to the series and yields an extra solution fori � � �t " ��
. By re-injection of this solution

to within order
© ��_ � into

�<� �p <_ � with computer algebra, one can see that
�<� �p <_ � is satisfied,

term by term to within that same order. Conversely, the coefficients of� for a particular choice ofi even can be obtained from this simple algorithm:

1. Select value of̄ andi � � ¯
and desired order� .

2. Set�h and� H according to eq. (23)�h � �i �i " ��� H � �¯ � " �¯ � ���¯ � �� ��¯ " �� �
3. Fort � �

to
�� � ��

(a) Let �:µ_­c � ¶ _lmh �l �l " �_� H � _� H. Note that�_� H is symbolic and not yet deter-
mined.

(b) Substitute�:µ_­c into
�<� �p <·�_� H�

.

(c) Isolate coefficient for
�_� H.

(d) Solve for�_� H such that this coefficient is zero.

A counterpart result also holds for the odd case ofi i.e. for
�<� �p <_ �. This simple algorithm allows

us to yield the series solution for� for any given choice ofi. At the same time, the solution of this
algorithm implies that

�<� �p <_ � � / is formally solved.

It must be emphasized that increasingt merely means adding basis functions. There are no singular-
ities between the two nuclei of H

�� , and we can expect the wave function to be not only continuous
but also continuously differentiable in that regime i.e. weexpect no surprises with the basis func-
tions ast � E . As the estimates for� and� are closer and closer to the true values of the
eigenparameters, the magnitude of the coefficientsn_ of eq. (15) become smaller and smaller ast � E . In this limit, the basis set is a valid representation of thetrue wave function.

The first 10 coefficients of the series for� �� �
where

� � � �
for i � / are:

� �� � � ��� � " ���v �� " ��v/v �F � �¡�¥ ��¡�v �� � ¥��£��¥££v �¦ (28)� v ��¥��¥/v/¥�///� ��v �¤ " ����¡���¡�¡�¥£ ��¡�£v � ¢ " v£��/£��¡�� �vv���� �v �v¡�v �L� �¡��£/v�v���v¡¡��¡��/v£¡����¡v¡�v �K � �vv/��¥£ ��v�� ��¡� ����¥�v�¡£���/���¥/��/� ��v � Hh
and our computer algebra programs allow us to generate many more such coefficients. The first
three non-vanishing terms of the Taylor series for� �� � �

have already been published for cases of
small � consistent with small internuclear distances
 [38–40]. We now claim that the present
algorithm provides a means of generating the Taylor series of � in small

�
where

� � � �
, the

result being valid ast � E and thusindependentof the size of the truncated basis. Later, we
will demonstrate it to be independent of the actual choice ofbasis. However, the first test concerns
numerical vindication.
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Table 2: Convergence of “Taylor series” of̧ ¹º» ¼
Ground State:½¾ ¿À ¹Á Â ½Ã Ä Â Å Ã Æ Â Å¼

ODKIL (accurate) series (20 terms)
 p A A

0 0 0 0
0.5 .46569679 .729927345e-1 .7299273577e-1
1.0 .851993637 .249946241 .2499467374
1.5 1.18537488 .498858904 .4988725127

] 2.0 1.48501462 .811729585 .8118596153
2.5 1.7622992 1.19023518 1.190951531
3.0 2.02460685 1.64100244 1.643819599
4.0 2.52362419 2.79958876 2.822919217
5.0 3.00919486 4.37769375 4.491055954
10.0 5.47986646 20.1332932 25.05609231
20.0 10.4882244 90.0528912 -1147.477000

Table 3: Convergence of “Taylor series” of̧ ¹º» ¼
State:

R¾ ¿À ¹Á Â R Ã Ä Â Å Ã Æ Â Å¼
ODKIL (accurate) series (20 terms)
 p A A

0 0 0 0
0.5 0.241110452 0.194282436e-1 0.1942824361e-1
1.0 0.459850296 0.711543142e-1 0.7115431427e-1
2.0 0.849546791 0.248466171 0.2484661714
3.0 1.19791141 0.510154273 0.5101542740
4.0 1.51924947 0.8535318 0.8535318053
5.0 1.82176362 1.28400188 1.284001886
10 3.19930169 5.12935962 5.127249696
15 4.51129751 12.4337232 -17315.20146

3.4 Numerical vindication of the Series forÇ ÈÉ � Ê
To vindicate the series, we obtain data entries of
 , � and� from program ODKIL and inject the
data entries of� into the series solutions for� . We then compare the latter with the value of�
obtained from ODKIL for a given state. This is done for the ground state and a few excited states as
shown in the following tables. The results for the ground state i.e.

�Ë ÌÍ �j � �� i � / � 	 � /�
are

shown in table 2 and those of state
�Ë ÌÍ �j � � � i � / � 	 � /�

are shown in table 3 demonstrating
that the same series of� for a giveni works for more than one state. The results for the excited
state

�� ÌÎ �j � � � i � �� 	 � /�
vindicate the series solution fori � �

. The results for state�1 ÌÍ�j � � � i � � � 	 � /�
vindicate the series solution for� for i � �

.

In all cases, we can see that the series obtained for� �� � �
works indeed like a Taylor series, work-

ing very well for small� . Beyond a certain value of
 , the series solution rapidly degenerates.
Nonetheless, e.g. for the ground state, the series solutionworks well near the bond length (around
 � �

which is underlined) and beyond. Degradation of the series becomes apparent at
 � v
.

The question arises as to whether or not the series coefficients of � �� � �
follow a pattern. We have

found none so far. The pattern of the changing signs
" � � is not one of alternating series and thus
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Table 4: Convergence of “Taylor series” of̧ ¹º» ¼
State:

RÏ ¿Ð ¹Á Â R Ã Ä Â ½Ã Æ Â Å¼
ODKIL (accurate) series (20 terms)
 p A A

0 0 -2 -2
0.5 .254186316 -1.96120498 -1.961204981
1.0 .53141962 -1.83001042 -1.830010419
2.0 1.15545177 -1.18688939 -1.186889387
4.0 2.35889913 1.53846448 1.538464473
6.0 3.43970785 5.92793017 5.927930398
8.0 4.4671459 12.0646853 12.07439611
9.0 4.97308004 15.8356448 16.60977070
10 5.476774 20.0920989 58.89905749
20 10.4882239 90.0528776 .7649129703e13

Table 5: Convergence of “Taylor series” of̧ ¹º» ¼
State: ÑÒ ¿À ¹Á Â Ñ Ã Ä Â R Ã Æ Â Å¼

ODKIL (accurate) series (20 terms)
 p A A

0 - -6 -6.
0.5 0.166934253 -5.98541087 -5.985410869
1.0 0.335547827 -5.94115241 -5.941152409
2.0 0.686698811 -5.75530105 -5.755301048
4.0 1.51188304 -4.86085811 -4.860858108
6.0 2.37168861 -3.43229937 -3.432299419
8.0 3.09069127 -2.07684281 -2.076688125
10 3.69538523 -0.874720469 2.071237971
20 6.12806789 7.31365225 5232651466.

this function is unlike all the special functions known in the literature (such as e.g. [41]).

Nonetheless, there is something of a pattern for a given series when modifying the quantum numberi, term by term. The first two terms�h and� H follow a pattern ini according to e.g. (23) for eveni. No such simple pattern exists for the next term��. However, if one solves for�� in terms of�h
and� H for a high value ofi, sayi � i` ­, , one obtains a polynomial formula for��. If one then
substitutes the general formulae ini for �h and � H into this polynomial expression for��: it will
correctly generate the coefficients�� not only for i` ­, but for all i � / � �� � � � � i` ­, . At some
point, the resulting formula will break down for a value ofi O i` ­, . This “triangular” relationship,
- useful because one often does calculations within for a limited range ofi - indicates that:

�� G def·ÓÔÕg I @·ÓÔÕ �i �B·ÓÔÕ �i � �
which places us beyond eq. (23) (or (25)) which determine�h and� H only. However, this is subject
of further exploration elsewhere.

The range of the series solution can be considerably improved by modifying the recurrence relation
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for
�<� �p < �

like so:�<� �p <h � � �
(29)�<� �p < H� � Ö� � � (30)�<� �p <l� H� � ��� � �� � " �� " Ö �� �� � � " � � ��� � � �� �� � " �� � � � �<� �p <l �
(31)�� � Ö �� � � ��� � ��� � � ��� �� � � �� �� � " �� �<� �p <l )H�

where it is understood
� � Ö � � �

but it is only
�

which is treated as a perturbation. This is simply
a different representation denoted� � � �� � Ö �

but which represents the same function� �� � �
.

Modifying slightly our previous algorithm, we obtain e.g. amodified series solution for� �� � Ö �
for i � /: � � Ö� � ���v Ö ��� Ö � ¡�� " ���£v Ö � @ H �Ö � ���� Ö � ¡��F �� Ö � �� �� (32)� ���� ��£v Ö F @F �Ö � �F�� Ö � ¡��¦ �� Ö � �� ��� �� Ö � �¥v� " � � �
where the polynomials

@l �Ö �
of order

�
are given by:@ H �Ö � � ¥� Ö � �� �� �@F �Ö � � �¡¡�£¡ Ö F " �¡�¥��¥� Ö � " �� �£�v/� �//¡ Ö � ��¡�v£¡��£���v

Note that if we injectÖ � �
into the above and make a Taylor series expansion in

�
, we simply

recover the series solution in
� � � �

obtained in eq. (27) fori � /. Since the radius of convergence
is determined by the closest singularity or branch point in the complex plane, we have� Ö � ¡� � �� � � � ¡�� � / ° � G v �¡
We note that the sequence of numbers 63, 231, 495, 855,. . . which appear in the denominator have
a pattern which can be found using thegfun package [45]. This demonstrates that these numbers
fit a holonomic function and it is found that these fit the pattern:� �� ¯ " �� �� ¯ " £�

(33)

We recognize it as one of the terms which appear in the recursion relations for
�<� �p <l �

i.e.
��� � �� ��� " ��

with
� � ¯ " �

. However, no pattern has (so far) been found for the
polynomials

@l �Ö �
. Nonetheless, our computer algebra routines allow us to generate this series to

relatively high order.

Next, the sum can be calculated using non-linear transformations known as the Levin or Sidi trans-
formations. The latter involves a series transformation bywhich one can accelerate the convergence
of a series and even sum divergent series (e.g. see the work of[43,44]). We take the point of view
that a Taylor or asymptotic series has all the desired “information”, getting numbers from the series
is a matter of a summation technique. These transformationsare available in the Maple system as
NonlinearTransformations .

The best results for the ground state are obtained by applying a Sidi 1 transformation in
�

com-
pounded withÖ as shown in table 6. Even when the modified series behaves badly, the result from
the Sidi 1 transformation provides reliable numbers. The results hold up remarkably well all the
way up to
 � �/ and beyond. Beyond
 � �/, the asymptotic series expansions as e.g. listed by
Čı́žeket al. [9] are more useful. What is important in our case, is that ourseries solution works so
well around the bond length and the intermediate regime.
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Table 6: Convergence of Series A(x,y)
Ground State Revisited:½¾ ¿À ¹Á Â ½Ã Ä Â Å Ã Æ Â Å¼

A
 series (12 terms) ODKIL (accurate) Sidi-d

1 0.24994624090 0.2499462409 0.2499462410
2 0.81172958404 0.8117295840 0.8117295850
3 1.6410024366 1.6410024369 1.6410024370
4 2.7995666114 2.7995887586 2.7995887590
5 3.9638237398 4.3776938960 4.3776937530
6 -4.6313683166e+03 6.4536051398 6.4536037430
8 -3.7137673759e+12 12.2262006172 12.2261746150
10 -1.5608159299e+33 20.1339450995 20.1332931780
15 1.0054600411e+15 48.8656127918 48.8223535290

3.5 Solution for Ç È× Ø É Ê
Although we have eliminated one of the unknowns i.e. found� �� � �

such that the determinantal
conditions for

�<� �p _ � are satisfied, there is still the remaining determinant
�<� �| _ � to address. The

recurrence relations for
�<� �| _ � of eq. (18) depend on the internuclear distance
 and have more

structure than those of
�<� �p <_ � of eq. (19) or

�<� �p �_ �
of eq. (20). Nonetheless, we proceed in

parallel to what we did for� �� � �
.

To start with, we ignore the term
�<� �| l )H�

and solve the resulting two-term recurrence relation
since all linear recurrence relations of this type are solvable in terms of the roots of the characteristic
polynomial obtained by assuming a

�<� �| _ � � n _ and then solving forn :�<� �| _ � � ����l Ù ��� � � " o� " Ú ��� �� Ù ��� � � " o� � Ú �� ��� ��Ù �� �o ) � Ú �� ��� �� Ù �� �o ) " Ú �� ��� �� (34)

where Ú � Û� � � � � � " 
 � " � � � �o� � � � � " � � 
o ) � � � � � � " 

andÙ is the Gamma function [41]. This result bears some resemblance with the outcome of solving
the eigenvalue problem for the hydrogen atom. In this case, solutions to the ODE for the radial
equation in the radiusU can be expressed in terms of hypergeometric functions. Matching the
asymptotic solution atU � E with the regular solution atU � / necessitates the elimination of
the irregular solution by forcing one of its coefficients - also expressed in terms of the Gamma
function - to be zero (e.g. see [42]). In our case (as in the case of the hydrogen atom), it is a matter
of ensuring that the arguments for one (or both) of the Gamma functions in the denominator of the
expression above to be�Ü whereÜ � / � �� � � � �

Thus, solving for� , we find that:� �
 �� � G � � " � �� " � Ü � � " � � � 
 " � Ü " � Ü � � 
 �� " � Ü �� �
(35)

What remains is the identification of
¯
. Next we treat term

�<� �| l )H�
as a perturbation formally by

multiplying it by
#

with the understanding that
�# � ��

. ForÜ � /, the series solution for� �
 �� �
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Table 7: Convergence of̧ ¹Ý Ã º ¼
Ground State:½¾ ¿À ¹Á Â ½Ã Ä Â Å Ã Æ Â Å¼

ODKIL (accurate) series (4 terms)
 p A A

0.5 0.46569679 0.729927345e-1 0.7299778055e-1
1.0 0.851993637 0.249946241 0.2499480309
2.0 1.48501462 0.811729585 0.8117297560
5.0 3.00919486 4.37769375 4.377693772
10 5.47986646 20.1332932 20.13329314
20 10.4882244 90.0528912 90.05289034
30 15.4919739 210.034597 210.0345960
40 20.4939187 380.025707 380.0257060
50 25.4951064 600.020452 600.0204512

is: � �
 �� � � �� " ��� � � 
 � 
� � �� � 
 �� #� � �� � � " � � � 
 � (36)� �� � 
 �� @� �
 �� �#��� � �� � " � � � � 
 �F �� � " � � � � 
 ��� �� � 
 �� @ Hh �
 �� �#F��¡ � ��� " �� � � 
 �¦ ��� " �� � � 
 �� ��� " �� � � 
 ��
where @� �
 �� � � �� � � " ��� � ��
 � � F " 
 �� 
 � �£� � � " £ � 
 � � 
 F@ Hh �
 �� � � v�� � Hh � � ���¡ 
 � ���� � K " � ��v¡ 
 � " ¥¡¥ � ��£� 
 � � L� � ��� 
 F � £�� 
 � " ���� 
 � �¡v� � ¢" 
 �� 
 F " �¡£� 
 � �/v¡ 
 � � ��¥£� � ¤" � 
 � �¥� 
 � � ��// 
 " ���v� � ¦� 
 F ��� 
 � � ¡£� 
 " �v ��� � � � � 
 � �v/ 
 � �¥£� � F" 
 ¦ �¡ 
 � ��¥� � � " �� 
 ¤ � � 
 ¢
The series looks complicated and the presence of singularities at every�
 " t � " � � � � /
for t � � � � � � � �

already tell us that this function is unlike most special functions in the literature.
However, the series gives very good results as shown in table7 with only 4 terms. It does not need
any convergence acceleration summation methods at large
 . The results of Table 8 for state

�Ë ÌÍ�j � � � i � / � 	 � /�
show us that� �
 �� �

works well for large
 but diverges for small
 .
Also shown in the table are the results of the Sidi1 transformation which considerably improves
the series solution for small
 .

What remains is to identify the meaning of the number
¯
. By checking the solution for excited

states, we find out empirically that: Ü � j � i � �
(37)

wherej is the united atom quantum number. This numberÜ is a valid quantum number for thesep-
aratedatom limit [8, eq.24,p.666]. Thus, just as we match the outward and inward radial solutions
for the radial ODE for the hydrogen atom by which to determinethe eigenvalue, the eigensolution
for H

�� results from matching� �� � �
governed by the united atom quantum numberi with � �
 �� �

governed by the separated atom quantum numberÜ � j � i � �
.
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Table 8: Convergence of̧ ¹Ý Ã º ¼
State:

R¾ ¿À ¹Á Â R Ã Ä Â Å Ã Æ Â Å¼
ODKIL (accurate) series (5 terms) Sidi-d
 p A A A

0 0 0 - -
0.5 0.241110452 0.0194282436 -7.5860659805e+02 0.0211395500
1.0 0.459850296 0.0711543142 -2.1405738045 0.0718499907
2.0 0.849546791 0.2484661710 0.23871213039 0.2485999772
3.0 1.197911410 0.5101542730 0.50971077859 0.5101743643
4.0 1.519249470 0.853531800 0.85348392428 0.8535343888
5.0 1.821763620 1.28400188 1.2839939077 1.2840020996
10. 3.199301690 5.12935962 5.1293596329 5.1293596444
15. 4.511297510 12.4337232 12.433723259 12.4337232589
20. 5.805158110 23.1467952 23.146795143 23.1467951431
30. 8.359177000 54.1918175 54.191817437 54.1918174372
40. 10.8899708000 97.83692290 97.836923003 97.8369230031

As suggested by Table 8 the series behaves well for large� , it is found that� �
 �� �
yields a stable

series in powers of
��� . To within

© ���� ¢ �
, the expansion for (36) is:� �
 �� � � �� " ��� � � 
 � �� 
 " ��� � " �� 
 " ��� � � � ��¡ 
 � " �/ 
 " ���¡� � F" ��� 
 � " ¡� 
 " � ��¡� � � � �¡� 
 F " v£¡ 
 � " ��/� 
 " ¡� ��v �� � ¦" ��v¡ 
 F " ���� 
 � " �v¡¡ 
 " �v¥��v �� � ¤ (38)� ����/ 
 � " �� �¡/ 
 F " ���¡�/ 
 � " � �/��� 
 " �� �£/£��¡��� � ¢" �� �¥� 
 � " ¥v/�/ 
 F " �v��¡� 
 � " v�£v �� 
 " �£ �/¡ ���¡��� � L� �£ �¡� 
 ¦ " � ��¡// 
 � " �¡/£��� 
 F " ��v��¥¡ 
 � " �� ��¥�¡� 
 " ¥/�¥ �v ���� �/£� � K" �¡vv�¡ 
 ¦ " ��¡¡/ �¡ 
 � " ¥�//v£¡ 
 F " �¥/ ���£� 
 � �v¡� �£¥/ 
 " �¥vv¥vv¥��� �/£�� Hh �

The coefficients up to
© �� )¤ �

have been previously published [40] but our computer algebra pro-
grams allow us to go much further.

3.6 Other Bases - Algebraic Vindication

Although our previous results are apparently independent of the size of the chosen basis, we must
consider other bases. For theY coordinate, we consider the Baber-Hassé and the Wilson bases [14]
which are described as follows.

Baber-Hassé: D �Y � Z� � (_` a ()6Þ k·m` �· @·̀ �Y �
(39)
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The recurrence relation is given by:�i " 	 " ����i " ��  �� �i " �� " \H$�·� H " � H �� ��· " �i � 	 ���i � �� �\H � �� i ��· )H � / (40)

where for	 � /: � H �� � � � � � � " i �i " ��� )H � / �
Wilson: D �Y � Z� � (_` a (6Þ �� � Y �` u� klmh �� ��l ?l �� � Y �l

(41)

The recurrence relation is:� �� " �� �� " 	 " �� ?l� H " Ì H �� � ?l " �  \H " � �� " 	 � ?l )H � / (42)

where Ì H �� � � � � � � " �	 " �� �	 " �� � " � �� " � 	 " � � " ��?)H � / �
Both of these bases have been implemented into the Maple system. If we consideri � /, the
coefficient�A

of Baber-Hassé basis is of order
© ���� A �

and the coefficient
?A

of Wilson basis
is of order

© �� h �
. However, if we inject our series solution for� �� � �

into the series coefficients
of both bases, we find that both�A

and
?A

areformally zero to within order
© �� A �

. This can be
seen through a number of computer algebra demonstrations. Thus our series solution for� �� � �

also
formally satisfies the recurrence relations of these other bases,order by orderin � .

For the
X

coordinate, apart from the used Hylleraas basis, there is also the Jaffé basis.

Jaffé: ] �X � � �X � � ��` u� �X " ��)` )H� \ßu�w ()w x klmh � l TX � �X " � V l
(43)

The recurrence relation is:�� " �� �� " 	 " �� � l� H " à H �� � � l " �� � \��� � �� " 	 � \��� �� l )H (44)

where à H �� � � � � � � " \� � �	 " �� ��� " � � \��� �� �� �� " 	 " �� " � � \��� �� )H � / �
Similarly, it can be algebraically demonstrated that e.g. for Ü � j � i � � � /, the

��� series
expansion of� �
 �� �

formally satisfies the coefficients of the Jaffé basis for negative powers of�
just as they satisfy the Hylleraas basis. This demonstration allows us to consider another basis of
importance for theY coordinate, namely the Power basis:



20

Power: D �Y � Z� � (_` a ()6 9H�Þ ; �� � Y �` u� klmh 1l á �� �� " !� �� 	 " �� �� �� " Y ��
(45)

The recurrence relation is:�� " !� " �� �� " !� " � � \H�� � 1l� H " â H �� � 1l (46)" �� " !� " 	 ��� " !� " 	 � \H�� � 1l )H
where â H �� � � � � � � � \H " �	 " �� ��� � � " \H�� �� � �� " !� � �� " !� " 	 " � � �� � \H�� �1 )H � / �
and

!�
is an exponentially vanishing term in
 and consequently we do not make the same demon-

stration as for the Wilson and Baber-Hassé bases. However,when we let
 � E then
!� � / and

we can make a similar demonstration as for the Jaffé basis using the
��� expansion of� �
 �� �

.

Granted, we have not proven this forall bases. Nonetheless, we emphasize that e.g. the Wilson
basis is very different from the Baber-Hassé basis or the Power Basis and the basis of spherical
harmonics we used as a starting point for this analysis. Moreover, the Hylleraas basis is also very
different from the Jaffé basis. These demonstrations strongly suggest basis independent results for� �� � �

and� �
 �� �
.

This analysis herein exploits the fundamental theorem of algebra i.e. that if one knows all the� roots of a given polynomial say
@A �� �

, the latter is completely defined within a scaling factor
namely the coefficient of its highest power in

�
. The three-term recurrence relations of eqs. (19),

(20) and (18) have a linear dependence on� for the term in1l butnodependence of� for the third
term in 1l )H. Thus,

�<� �p <_ �, �<� �p �_ �
and

�<� �| _ � are t:± degree polynomials in� regardless
of whether or not the third term in1l )H is neglected. This allows us to completely account and
identify the the eigenparameters of the matricesp and| for every discrete state.

3.7 Mathematical Classification of Solutions

So far, we have identified the functions implied by the determinants
�<� �p _ � and

�<� �| _ �, namely� �� � �
and � �
 �� �

respectively forall discrete states where	 � / for the homonuclear case.
In view of previous and recent work on the� � �

version of H
�� and the findings in this work

concerning the� � � version of H
�� , we are now equipped with the means to make the following

analytical comparison. Here, we can put the� � �
and the� � � versions of H

�� on the same
“canonical” footing:

D � 1: To reiterate the results of section 2, the energy eigenvalueis governed by an equation of
the form: <=> ��� 
 1� � @� �1 �ãäå 9*;æ where � � � 1�� (47)

When the second order polynomial
@� �1�

factors into a product of first order polynomials,
both sides of eq. (47) factors and the solution for1 is a (standard) Lambert

5
function
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[19, 20]. When it does not factor, the solution is a generalization of the
5

function reported
in the work of [28]. When the right side is a polynomial, the solution is ageneralizedLambert5

function [30]. The subscript
@ A �1�

reminds us that our generalization for the
5

function
can accommodate a polynomial with rational coefficients of arbitrary degree on the right side
of eq. (47).

The exponential term on the left side is a reflection of the fact that outside the Dirac delta
function wells, the basis of the particle is a combination offree particle solutions which
required matching at the Dirac delta function peaks.

D=3: To summarize the results of the past few sections, the eigenparameter� , which plays an
analogous role to the parameter1 of the � � �

version of H
�� is determined from the

equation: � �
 �� � � � �� � �ãäå 9w ;æ where � � �� � �
 � (48)

The subscript
@A �� �

reminds us that we have a Taylor series for� �� � �
with rational coeffi-

cients which exactly matches the generalized right-hand side form of eq. (47). However, the
left-side of (48) looks very different than the left side of (47); it is the function implied by�<� �| _ � and is associated with the separated quantum numberÜ � j � i � �

. Nonetheless,
like <=> ���
 1�

, this function is well-defined asymptotically for large
 . The right side of
eq. (48) is implied from

�<� �p _ � for even or oddi which is a united atom quantum number.

So far, the functions� �
 �� �
and� �� � �

appear in the literature as expansions in terms of� )l
and� l

respectively, restricted to
� � ¡

and for specific cases of large and small values of
 [38–40]. We can obtain series representations of both to a much greater extent in view of
our computer algebra implementations. We have also seen that � �� � �

can be represented as
an infinite series in

�
where

� � � �
and is consequently polynomial-like.

Note that if	 �� /, the governing equation has the same form as eq. (48) but the left side
is more complicated and more difficult to get, as the determinant

�<� �| _ � is no longer gov-
erned by a simple recurrence relation. However, in principle, eq. (48) governs the entire
homonuclear case.

Mathematically, in both cases, the right side of the governing equation is expressed in terms of
only one of the eigenparameters whereas the left side requires the parameter and the value of the
internuclear distance
 which is determined on input.

We therefore come to the conclusion that the eigenparameter� , like its � � �
counterpart1, is

also determined by a special function which is animplicit function, an even greater generalization
of the Lambert W function. So far, the functions� �
 �� �

and� �� � �
do not appear in the literature.

However, we can obtain series representations of both to theextent of getting reliable numbers, as
demonstrated by our tables of values.

On the subject of implicit functions or implicit equations,these are seen in a number of specific
contexts:

Retardation Effects: Equations of form()J ç � @� �#�
and more generally()Jç � @� �#��B H �#�

express the solutions of a huge class ofdelayeddifferential equations [46, eq.(3)].

Bondi’s K-calculus: It is well known in the area of special relativity that the Lorentz transfor-
mation can be derived from the theory of implicit functions with minimal assumptions of
continuity [47]. Here one seeks the functionn �7�

satisfyingn �n �7�� � �� 7
and the require-
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ments that it be monotone increasing and continuous. The unique solution is:

n �n �7�� � �� 7
where ¬ �? � �� � ���� � n �7� � � 7

GRT/QFT: As we mentioned before, the Lambert W function and its generalization appear in
General Relativity as solutions to respectively the two-body and three-body linear

�� " ��
gravity problems via dilaton theory [28,29].

Implicit functions often appear in problems with retardation effects, relativistic or otherwise. Thus,
with some reservations, we associate with this mathematical category a tentative “physical picture”:

Although the hydrogen molecular ion H
�� in the context of the Schrödinger wave equation isnot

a relativistic formulation, the eigensolutions we obtain nonetheless suggests something akin to a
retardationor delayeffect. This is not the case for a one center problem like the hydrogen atom
but this characteristic appears for a two-center problem. However, this statement must be tempered
with the fact that e.g. the Lambert W function also appears inmany other types of problems with
no relationship to retardation effects.

4 Summary/Conclusions

Through experimental Mathematics using computer algebra as a tool, we have identified the math-
ematicalstructuresgoverning the energy spectrum of the hydrogen molecular ionH

�� for the two-
center one-electron problem.

In the present work, we started with a particular choice of basis and expressed the determinantal
conditions by which the eigenparameters� and� are obtained. From one of the two determinants,
we inverted the problem to obtain a series representation ofthe separation constant� �� � �

associated
with the united atom quantum numberi. We applied a similar approach to obtain� �
 �� �

from the
remaining determinant and associated with the separated atom quantum numberÜ � j � i � �

.
wherej is a united quantum number. We then demonstrated that the results were independent of
the size and even the choice of basis.

The eigenparameter� for which � � ��� � �
 �
is obtained by matching� �� � � � � �
 �� �

and
found to be the solution of an implicit function, with features similar to that of the Lambert W func-
tion and its recent generalizations [30]. This allowed us to mathematically categorize the eigenval-
ues (or rather make us realize what they are not) and even to associate a tentative “physical picture”
to the solutions. While we made no pretense at rigor, the solutions were nonetheless vindicated
numerically and by algebraic demonstrations with computeralgebra.

The results express analytical solutions for the ground state and the countable infinity of discrete
states of H

�� for the homonuclear case when the magnetic quantum number	 � /. From the
discussion below eq. (48), we anticipate that the eigensolutions for 	 �� / for the homonuclear
case to be qualitatively similar though admittedly this remains to be proven. We emphasize that
although the basis and approach used here were ideal for	 � / and the homonuclear case. the
computer algebra methods shown are directly applicated to the heteronuclear case with	 �� /.
For 	 �� /, one should work directly from the recurrence relations of the chosen basis now that
we understand how these basis coefficients behave with better and better accuracy for the series
expansions of� �� � �

in � and the asymptotic series expansions for� �
 �� �
in

��� .

However, we make no pronouncements concerning the nature ormathematical category of the solu-
tions for the heteronuclear case or when the nuclei are allowed to move. We note that for	 � /, the
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matrix for
�<� �| _ � remains tridiagonal while the band matrix for

�<� �p _ � is pentadiagonal and con-
sequently governed by nested recurrence relations [15] suggesting that the analysis shown herein is
possible.

A number of issues arise from this result. In a sense, the result is both overdue and premature. It
is overdue because of our present capacity to find solutions to fair-sized molecules using computa-
tional chemistry. On the other hand, it is premature. The functions we found� �� � �

and� �
 �� �
do not seem to resemble anything we have seen in the literature. The apparent singularities or
“resonances” at

�� � � � �� ¯ " �� �� ¯ " £�
for � �� � �

and
 � �¯ " �� � " � � �
for � �
 �� �

for¯ � / � �� � � � � �
do not constitute a problem since the eigenparameters� and � for a given
 are

never found on these resonances. Once a value of
 is injected into� �� � � � � �
 �� �
, solving for� numerically did not create any problems in the test cases examined so far. At any rate, the tables

shown herein merely illustrate the convergence propertiesof the functions� �� � �
and� �
 �� �

we
have identified: solving the coupled set of polynomials

�<� �p _ � and
�<� �| _ � for � and� at a given

distance
 involves no resonances and is still the most useful method from a computational point
of view. In principle, the latter can go further than any FORTRAN program.

We have ordered series representations to relatively high order of both of these functions� �� � �
and � �
 �� �

and we can generate reliable numbers for a number of discretequantum states. We
have also demonstrated that we could use these series beyondtheir radius of convergence using
techniques for handling divergent series.

From here, one could explore and seek alternate representations of these functions with better con-
vergence properties especially at low
 for � �
 �� �

and large
 for � �� � �
but the results from

the Sidi transformations are already very promising. At anyrate, the hydrogen molecular ion for
clamped nuclei can be entirely contained within simple computer algebra sessions, not much more
complicated than those of the hydrogen atom1.

The exploratory and roundabout way by which we found our solutions, suggests there is something
missing in the mathematical physics or the methods for obtaining the eigenvalues of the Schrödinger
wave equation. There is hardly any existing “technology” for solving quantum chemistry problems
involving implicit functions. Our use of a basis is certainly valid to demonstrate or prove a re-
sult. Furthermore, the convergence of the bases used here has been confirmed by determining the
asymptotic behavior of the expansion coefficients of the wavefunctions for the various basis sets
considered [40]. Nonetheless, a more direct way of generating the functions of� �� � �

and� �
 �� �
would be instructive.
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Energy vs. R for H
�� (a.u.)
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