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Abstract

Herein, we present analytical solutions for the electremiergy eigenvalues of the hydrogen molec-
ular ion Hf, namely the one-electron two-fixed-center problem. Theseyaen for the homonu-
clear case for the countable infinity of discrete states whemagnetic quantum numberis zero
i.e. for2Xt states. In this case, these solutions are the roots of a $ebafoupled three-term
recurrence relations. The eigensolutions are obtained &o application oexperimental mathe-
maticsusing Computer Algebra as its principal tool and are viniddy numerical and algebraic
demonstrations. Finally, the mathematical nature of thereénergies is identified.

PACS: 31.15.-p, 31.15.Ar, 02.70.Wz, 31.50.Bc, 31-50.Df
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1 Introduction

Although, there are well established software package$iénarea of quantum chemistry such
as GAUSSIAN [1], MOLPRO [2] and GAMESS [3] which allow to olrtaapproximate numerical
solutions to a number of fair sized molecules, the simpledeoule namely the hydrogen molecular
ion, a quantum mechanical three-body problem, still resaiathematically intractable.

In the fixed nuclei approximation, it is well known that theh&adinger wave equation - a second
order partial differential equation (PDE) - of the problefnone electron moving in the field of
two fixed nuclei can be separated in prolate-spheroidaldioates [4]. These coordinates allow
a separation of variables that results in two non-triviaimary differential equations (ODE), and
hence two eigenparameters: the energy paraméteand a separation constastrelated to the
total orbital angular momentum and the Runge-Lenz vector.

We note that asymptotic expansions for small or large inteear distance® have been obtained.
A very comprehensive presentation of the energy eigensdiniethe ground state and a number
of exited states is shown in the work Gizeket al. [9]. These could almost constitute analytical
solutions but the resulting series are divergent thougmasytic [10] and therefore useful only at
large internuclear distances. Another complication i$ thiathe homonuclear case, evaggrade
energyE, (wave function symmetric under exchange of nuclei) has atespartungeradesolution
(wave function antisymmetric under exchange of nuclei) s¢henergyF,, has exactly the same
1/R expansion. This makes the calculation of exchange eneldtirgels AE = E, — E, very
elusive to calculate at larg, although there are specialized methods for recoverirggethplittings
(e.g. see[11]).

Even recently, there has been examination of series in dihthited to the ground state short-
range interaction energy [12] but we still have no furtheight into the actual mathematical nature
governing the energy eigenvalues. We also cite the work ofika® et al. [13] but their analytical
solutions correspond to a peculiar charge ratio dependirtainternuclear distance and therefore
not physically useful.

Thus, complete analytical solutions of the eigenstatesjofirlareas of molecular interest, such as
e.g. the region near the equilibrium internuclear distgbomd length) of the ground state remain
elusive.

A wide variety ofnumericalmethods have been used to solve the ptoblem in this case. For
example, Bates, Ledsham and Stewart [5] used recursion @mtthged fractions. Hunter and
Pritchard [6] used matrix methods and Rayleigh quotiemiten. Madsen and Peek [7] used power
series and associated Legendre expansions to set up twhoeguahose simultaneous solution
then gave the two eigenparameters. An accurate way to ofteirgies and wavefunctions for the
one-electron two-center problem is provided by the prog@BKIL conceived by Aubert-Frécon
et al. [14, 15] based on a method by Killingbeck. As of the 1980s,dswwossible to calculate the
eigenenergies and the eigenfunctions of the discretesstate] with a rapid FORTRAN program.
Yet, complete analytical solutions have so far remainegiedu the classicalV-body problem
cannot be solved in closed form f8f > 3 and the quantum counterpart is even worse by virtue of
being an eigenvalue problem.

The approach used here is called “experimental matheraticsunorthodox approach involving
multi-disciplinary activities by which to find new mathericat patterns and conjectures. The goal
in this context is to search and find mathematical structarespatterns to be re-examined with
more “rigor” at a later stage. The level of rigor is of courstative: in dealing with a difficult
problem in applied Mathematics, we cannot approach thé déviggor demanded in number theory.



Nonetheless, we desire demonstrations sufficiently camgnto the molecular physicist.

The present work will involve a combination of methods, tesand procedures from different
areas. We first start with results from what is calletimensional scaling It has been known
for some time that the Schrddinger wave equation can berglged to an arbitrary number of
dimensionsD which can be subsequently treated as continuous variaBlel§l. In the limit as
D — 17, the hydrogen molecular ion becomes the double well DirdtaDenction model which
can be solved exactly [25] in terms of thambert W functiofil9, 20]. Dimensional scaling applied
to Hy has been studied at length by Hershbach’s group [21-244riicplar, by Frantz [21], Loeser
and Lopez-Cabrera [22, 23]. The latter work provides evemeniosight into the mathematical
relationship between the realfHat D = 3 and its one-dimensional limit.

Next, armed with the information provided by dimensionallsg, we will return to the real three-
dimensional formulation of Aubesdt al.[15]. This formulation is re-examined using a Computer
Algebra System (CAS) within the approach of experimentalheatics: patterns and results are
obtained. The CAS used is Maple because it is readily availabus but the results could also be
implemented on other systems. The resulting series exgpanaire verified numerically and alge-
braically. In particular, we will demonstrate that our riésare independent of choice of basis and
basis size and consequently completely general. The esutt-keill be then analytically compared
with the one-dimensional result and put on a near equalrfgailowing us to find the mathemat-
ical category to which belong the eigenvalues gf.Hn view of the type of solution obtained, a
tentative “physical” picture is associated with the arabjttsolutions. A summary with concluding
remarks is made at the end.

2 Preliminaries - Dimensional Scaling

TheD — 17 version of H [17,18] is given by the double Dirac delta function model:

_%‘;2775 — q[6(z) + Mo(z — R)]y = E(\)y €N

whereZ4 = g andZg = X\ ¢q. The ansatz for the solution has been known since the work of
Frost [26]:
?p — Ae—d|$| +Be—d|w—R| (2)

Matching ofy at the peaks of the Dirac delta functions positioned &t 0, R when(A = 1) yields:

q— d qede _
‘qe_dR e_d|=" 3)
and the energies are thus given by:
E.=—d%/2 where di=g[l+e &F] (4)

Although, the above has been known for more than half a cgritiwas not until Scotet al. [25]
that the solution fotl was exactly found to be:

dy = g+ W(+qRe %)/R (5)

where+ represent respectively the symmetricgeradesolution and the anti-symmetric anger-
adesolution and¥ is the Lambert W function satisfyind (¢)e"” () = ¢ [19,20]. This function first
introduced by Johann Heinrich Lambert (1728-1777), a copteary of Euler, has been “invented”
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and “re-invented” at various periods in history but its ubigus nature was not fully realized within
the last decade or so.

For example, théV function appears in Wien’s Displacement Law of Blackbodgiaton. In
general, it has appeared in electrostatics, statisticahargcs, general relativity, radiative transfer,
guantum chromodynamics, combinatorial number theory,doesumption and population growth
etc...(e.g. see ref. [27] and references herein).

More recently, the Lambel function has also appeared in “linear” gravity two-bodylgem [28]
as a solution to the Einstein Field equations with one spdimension and one time dimension
(14+1). The present work also includes a generalization ofthinction. Recent work [30] shows
that theW function can be further generalized to express solutionsaioscendental algebraic
equations of the form:

exp(tcz) = (6)

wherePy (z) and@ s (z) are polynomials in: of respectively degree¥ andM andc is a constant.

The standard¥ function applies for cases whé¥i = 1 and M = 0 and expresses solutions for
the case of equal charges for eq. (1) or equivalently the chggual masses for the two-body
1+ 1 linear gravity problem. The case ohequalcharges or unequal masses corresponds to cases
of higher N and M values. This form also expresses a subset of the solutiotige three-body
linear gravity problem [29,30] where one deals with tramsiestal equations of the form (6) where
M,N — .

Some insight into the mathematical nature of the eigenézenf Hf is revealed by the fact that
the eigensolutions for the electronic energie®ats 1T andD — oo actually bound theD = 3
ground state eigenenergy offH21,22] as shown in Figure 1. Moreover, the latter can beregéd
by a linear interpolation formula [23]:

Bo(R) = 5Bi(%) + S Ba(2) ©

This formula agrees with the numerically accurate eigerggnéas given by program ODKIL or
the work of D. Frantz) to within about 2 or 3 digits for the rangf R near the bond length. The
result atD — oo involves the extrema of a Hamiltonian expression [23, &)](8/Me re-examined
this result. One has to consider a regionfflivided by R, = %x/ﬁ For R < R, the root is
determined by the root of a quartic polynomial [23] and theutefor R > R, is determined by a
sixth degree polynomial. Thus, the resultfat— oo is algebraic. On the other hand, the result at
D — 1% isin terms of an implicit special function, which is the Laenbi?’ function. Given how
well this interpolation formulation works, this alreadyggests what is the mathematical nature of
the eigenenergies of the true hydrogen molecular o= 3).

We can state this in view of the work of Frargt al. [21] who showed that thé-dimensional
problem could be decoupled into two coupled ODEset D < oo and how a particular energy
eigenvalue for a giverD could exactly express the solution of another eigenvaluaroexcited
state at a dimensioP? + 2 through a precise re-scaling.



3 Three-dimensional Hf

3.1 Starting Formulation

The Schrodinger Wave Equation foi'Hn atomic units is given by:

[A+2(é+@>+2E]¢:o (8)
TA B

As mentioned before, this is separable into prolate-spti@rgoordinates:

& = (ra+rp)/R , 1<{<
n = (ra—-rg)/R , -1<n<1
0<¢p<2m

Q1 = R(Za—Zp)
Qy = R(ZA+ZB)

We can write the ansatz for the eigensolution:

P(E,n, ¢) = AE)M(n, $) = A(6)G(n)e™™? (9)

which allow us to obtain two coupled ODEs:

a D) 8 m2 2 9
—(1-n)=) - - Al M = 10
[Bn(( n)an) 2t Qin (n,¢) =0 (10)
0 2 0 m’ 202 _
[8_5 ((f _1)8_5) o1 —pE+ Q0+ A A =0
whereA is the separation constant and the eigenenérig expressed as:
2
p
Eetee = —2 ﬁ (11)
Note that:
}ll_r% A = —L(+1) (12)
. 2 _
}zlino p° = 0 (13)

Although the set of quantum numbdis, £, m) - theunitedatom quantum numbers - can be used to
identify the eigenstates, as is the case for e.g. programIDODinust be emphasized that only the
magnetic quantum numbet is a good quantum number (resulting from the azimuthal sytmyme
of H3 about its internuclear axis).

We follow the treatment of Aubest al. [15] and consider the following basis expansion for the
coordinate:
M(n,¢) = > [ Yi"(n,¢) (14)
k=m
whereY,™ are the Spherical Harmonics. Injection of the above baststhre ODE governing/
in n leads to the creation of a symmetric matfixwhose determinant must vanish wheand A
satisfy the eigenvalue problem:

[F(p, A)]|f] =0 (15)
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where
22 —2m? +2i — 1
F;(p,A) = —i(i+1 2 A
i(p, A) ii+1)+p ( @ =T) )
oy _ (i+m+1)G—m+1)\Y?2
Pl A) = RQ1< 2+ 1)(2i +3)
Fiioilp, A) = p? (i+m+1)i—m+1)(i+m+2)(i —m+2) 1/2
1+2,i\D> - (2’L+3) (2Z+1)(2Z+5) ,

are the non-vanishing matrix elements®f If Q1 = Z4 — Zg = 0 i.e. the homonuclear case,
then the pentadiagonal mati# divides inevenandoddtridiagonal matrices in terms af where
z = p? with no explicit dependence on the internuclear distaféalthough this is not true for
the other ODE irt). For the¢ coordinate, we use a basis of Hylleraas functions, i.e. rimgeof
Laguerre polynomials:

A =ePEI2pE = 1™ Y Crpmy L3 (my2)[2p(€ = 1)] (16)
n=m/2
Y, A)]IC] = 0 (17)
V(p,4)] = [Qp,A)] + pm?[B(p) ™"
where
bi’i(p) = 4dp+2i+1,
1/2
biiri(p) = birialp) = = [(i— 5 + D+ 5 +1)]
and
2
’I"Z',Z'(p,A) = (2i—|— 1) (R2§2 —71—1 —2])) + mT +i+ R Qo —p2+A,
.om .m 1/2 RQy
’I‘i+1,i(p,A) = —[(z—;—l—l)(z%—?%—l)] X ( % —7,—1)
riiv1(,A) = ripni(p,A4) .

Whenm = 0, the matrix is tridiagonal. Fain # 0, one has to consider the inverse of the malfjx
which is not a band matrix.

Of course, we realize that this choice of basis is only oneeeémal possible choices. The results
obtained are valid provided the results are independertesize of the basis and the choice of
basis.

3.2 Recurrence Relations

The following relations apply to the homonuclear case andrwh = 0 in which case, the band
matrices are purely tridiagonal matrices. These are gedeby recurrence relations namelj.1)
and(A.2) of reference [15]:

det[Qﬁo] =1
det[iml] = mia
det[i)ﬁk] = mk,k det[imk_l] - mk_l,k mk,k_l det[ﬂﬁk_z]



Thus form = 0, we have the following:

det(y()) =1
det(Y,) = §—1—2p—|—2R P+ A (18)
det(Vk+1) = (2k:+ (——k—l—Zp)+k+2R—p2+A>det(yk)

2
—k? (5 — k) det(Vy_1)
p

For the everf case, we have:
det(Fep) =
det(Fe;) =

p? Bk +4k—1)
(4k— 1) (4k +3)

—1)? k2 det(Fey_1)

1

p

3
det(Fept+1) = < 2k(2k+1) + —A) det(Fey)

- (19)
(4k - 1) (4k—-3)(4k+1)
Definingdet(Fo;) = det(F(¢)) for the odd/ case, we have:
det(Fop) = 1
det(Fo1) = -2+ 3% -
’ (2(2k+1)2+1+4k) |
det(For+1) = | —QRE+1)(2k+2)+ @k 1 5) (@ +1) - det(Fog)
472 2
p*k* (2k + 1)° det(Fog_1) (20)

(4k +1)* (4k — 1) (4k + 3)

Note that the radial equations for the hydrogen atom arergedeby two-term recurrence relations.
Thus, it suffices to find an eigenenergy such that the coefticig,; of the basis of Laguerre
functions is zero. This in effect truncates the infinite eglinto a polynomial and consequently
closed form solutions for the eigenstates are obtainededfiydrogen atom. This is not possible for
H3 which is governed byhreeterm recurrence relations no matter what the choice obasi

The band matrices for Hand their determinants have been injected into a compigebed system.
The determinantdet();) anddet(F;) (even or odd) foi = 1,2, 3 ... are multivariate polynomial-
like in A andp. The determinantdet(F;) are true polynomials i andp?. On the other hand,
althoughdet();) is a polynomial inA4, it has also negative powers fprand thus akin to a Laurent
series (Laurent polynomial) in.

It is possible to eliminate one of the unknowns by obtainingsultantof the two determinants
det(Y;) anddet(F;). If a andb are polynomials over an integral domain, where et 2 (ratjona
polynomial equations in 2 unknownsandp.

n

a:anH(x—ai) bzbmH(iv—ﬂi)
i=1

i=1
Then

resultant(a, b, z) = a'b}, H H

i=17=1



3. THREE-DIMENSIONALH 9

This can be computed from the Euclidean algorithm or deteauti of aSylvestemmatrix and its
roots will be common to those satisfying the original set ofypomials. Since both expressions
are true polynomials i only, the resultant must be id. E.g. fori = 2 (i.e. 2 x 2 matrices)

resultant(det();), det(Fe;), A) =

64/1225 p8 + 512/245 p” — 256/245 (R — 27) p® — 128/245 (56 R — 369) p°
+ 64/245 (2911 — 1037 R + 27 R?) p* + 32/245 (13580 — 9405 R + 948 R?) p?
— 32/245 (140 R? — 17780 + 24010 R — 5571 R?) p? — 64/7 (20 R® — 224 R?
+ 481 R — 161) p — 4128/7 R® + 19968/7 R? + 16 R* — 2880 R + 304
+ 16/7 R (28 R® — 347 R?> + 791 R — 252)/p + 4 R? (20 R? — 108 R + 85)/p?
+8R3(4R-9)/p® + 4 R*/p*

i.e. a Laurent polynomial ip with coefficients inR only. When the size of thé x ¢ increases,
the size of the resulting expression increases dramati¢@dpression swell). However, from a
numerical point of view, the most useful outcome comes fromerically solving the simultaneous
expressions fodet();) anddet(F;) since: must be sufficiently large to give a sufficiently good
result near the bond length. In Maple, this can be done usi@fsblve procedure. To find the
minimum energy for the ground state, it is a matter of gettlagvatives of these determinants with
respect taR. Combining the latter with the condition:

OET

OR
we get five equations in the five unknowRs A, p, % and %. The result has been calculated
using a small Maple program. In atomic units, these are:

=0 where Er = Fge.+1/R (21)

R = 1.997193319969992...
Erinimum = —0.6026346191065398 . ..

Note that the electronic energy, evaluated®at 2.0 a.u. for comparison, is as expected exactly
the reference tabulated value of Madsen and Peek [7]+@.6026342144949. An indirect way

of ascertaining the accuracy of electronic energies is ¢éothsse values in an adiabatic standard
scheme to obtain vibrational energies which are directmmarable to highly accurate values pro-
vided by approaches that do not involve the separabilithefdlectronic and nuclear motions (e.g.
[31-33] and [34, 35]). This has been done [36] and compasisdth values from the literature are
displayed in table 3.2.

In fact, given how heavy the nuclear centers are with resfmetihe electron, clamping the nu-
clear centers is a very good approximation for the quantusetbody problem represented by H
with the following caveat: the approximation that the nuelee clamped fixed in space creates a
symmetry under exchange of nuclei in the homonuclear casdiffékent picture arises when the
movement of nuclei is considered. The mere movement of tkkenbreaks the symmetry under
exchange of nuclei and thereby leads to a localization ostates. In this case, the work of Esry
and Sadeghpour is instructive [37].

However, if one stopped here, there is no pattern from arytcal point of view. E.g. setting
z = p? and examininglet (Fe;) at low order in4, we have:

ati = 2:
1/35p*(—70 + 3p®) + (6 — 6/7p*) A + O (A?)
ats = 3: 5 944 5
= p2 (1848 — 126 p% + p* —120+ —=p2 - ZpHA A?
231p(88 6p° +p*) + (—120 + TP 11p) + 0 (4?)
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Table 1: Ground State Vibrational Energies
Energies are in a.u., differences inth(1 a.u. = 219474.63 cmt )
a) ref. [31], b) ref. [32], c) ref. [33], d) ref. [34], e) ref3p]

Quantum Present Differences
System|| Vibrational Adiabatic Literature AFE
Numberw Values Values (cm™1)
Hy 0 -0.597138471] -0.59713905%9 -0.13
-0.597139063123 -0.13
1 -0.587154167| -0.587155679212 -0.33
Dy 0 -0.598788594| -0.5987876(11) +0.22
-0.598788784331 -0.04
HD™ 0 -0.597897521| -0.597897968% -0.10
-0.5978979686 -0.10
ati =4:
WPQ (—2162160 + 173316 p> — 2772p" + 7p%)
6356 28
o 2 SOOY 4 2Y 6 2
+(5040 — 1032 p” + 05 P " 13 P JA+ 0 (4?)
If we look at A = 0 and grab the leading coefficien?, we have the sequence
—70,1848,—2162160.... Not only are the coefficients increasing dramatically iresithey also

alternate in sign. Although the root$, p of these determinantdet();) anddet(F;) converge
with increasing;, the actual coefficients of these determinants and espetiake of the resultant
increase in size becoming more and more cumbersome altt@kS can handle them (up to a
point).

Moreover, we have made a particular choice of basis and tmbiced set of polynomial-like ex-
pressions for the determinants though numerically usefulccbe viewed more as a computational
“model” rather than anything truly representative of thevevéunction. If we stop here, we see no
pattern. Insight comes froinvertingthe problem.

3.3 Roots of Determinants

The three-term recurrence relations &et();) or det(F;) cannot be solved in closed form. We
start withdet(F;) because it is easier and has no explicit dependende. d&spon careful scrutiny

of egs. (19) and (20), the term itet(F;_1) has a coefficient ip* whereas the term idet(F})

has terms at ordgs®. Let us assume thatis small, which is indeed the case for sm&ll We can
therefore neglect the last termdat (F_1) and the resulting two-term recurrence relation becomes
trivial to solve. It is merely a matter of compounding the tiplicative terms of the recursion:

k-1

det(Fex) =~ (-1)* ] (2j(2j +1)+ A
j=0

(8% +4j5 - 1)p2>

(47 -1) (47 +3) (@2)
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Solving for A such thadet(Fey) = 0 yields:

852 +45 -1 »
(45 —1)(4j + 3)
We can clearly identify thé&? — 0 limit with £ = 2 5. Similarly, for the odd case, we have:

A= —2j(2j+1) + 2+ 00pY (23)

852 + 125 + 3)p2>
det(Fop) ~ (—1)* (25 +1 A—( 24
o H( UHNeIHD A Gy ) @Y
872+ 125+ 3
A= —(2j+1)(2j+2) + i s 2+ o0pY (25)

(45 +1)(45 +5)
We can clearly identify th&? — 0 limit with £ = 2 j + 1. Thus, althougt is only a valid quantum
number in the united atom limit, it is nonetheless feasiblede it to identify an eigenstate as an
expansion for smajp (and small R).

By the implicit function theoremdet(F;) = 0 = A = A(p?). Moreover, the structure of
the recurrence relations faiet(F;) anddet();) namely egs. (19), (20) and (18) tell us that all
these quantities aré” degree polynomials imd. If one can find all the values of such that
these determinants are zero, the latter are clearly knovthebfundamental theorem of algebra. If
det(F;) as a formal series im wherez = p2, we can usaeversionof power series to obtain an
analytical solution. This is the best possible analytiesuit. E.g. , we consider:

x = cos(z) = x/cos(z) = A where A\ =1 (26)
ls 55 _
1 1
=z = X — §A3 3>\5

The reverted series af in terms of A can be obtained in a number of ways including Lagrange’s
method [4] and represents the best possible representztiam analytical solution to the root of
eg. (26). Formally, the infinite series kis a complete solution. The issue of getting numbers
for e.g. A = 1 is a matter of a summation technique. Solutions by reversfqrower series are
possible via Maple'solve command. E.g. invertinget(}"eg) yields:

94
1/3x+ﬁx -I-O( ), _6+ﬁ ——9261x -I-O( )
39 8

wherez = p?. To first order inz (or p?), we recover the solutions in eq. (23) for respectively
¢ =0,2,4. The action of invertinglet(Fe;) produces solutions to orde©(z?). E.g. if we isolate
the £ = 0 solution obtained frondet(Fe;) for i = 3,4, 5, 6, we obtain:

i=3: 1/3x+ix +0 (%)

135
i=4: 1/3x+ix T z® + O (z*)
: 135 8505
2 4 26
= : 1 — 3 _ 4 5 27
1=5 /3$+135$ + 5505° " 1oizes° TO @) (27)
4 26 92
i =6: 1/3 — 3 _ z? 0
! / $+135$ * 8505 Y 1013625 ° 37889775$ +0 (a°)

2 4 26 92
i—o00: 1/3z+—z°+ 3 4 x5+ ...

135 8505~ 1013625 ~ 37889775
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What is important to note is that the coefficients stablé Lettingi — 7 + 1 adds a term of order
O(z*+1) to the series and yields an extra solutionfet 2 (4 + 1). By re-injection of this solution
to within orderO(z*) into det(Fe;) with computer algebra, one can see thet(Fe;) is satisfied,

term by term to within that same order. Conversely, the adefits of A for a particular choice of
£ even can be obtained from this simple algorithm:

1. Selectvalue of and? = 2j and desired ordeN.
2. Setag anda; according to eq. (23)
ag = 4 (é + 1)

852 +45 —1 .
(45— 1)(4j +3)

a

3. Fori = 1to(N —1)

@) LetApia = Yb_oarz® + aip1 2. Note thata,,, is symbolic and not yet deter-
mined.

(b) Substituted;,;q; into det(Fegyir1).
(c) Isolate coefficient fox?*!.
(d) Solve fora; 1 such that this coefficient is zero.

A counterpart result also holds for the odd caséiaé. fordet(Fe;). This simple algorithm allows
us to yield the series solution fet for any given choice of. At the same time, the solution of this
algorithm implies thatlet(Fe;) = 0 is formally solved.

It must be emphasized that increasingerely means adding basis functions. There are no singular-
ities between the two nuclei of H and we can expect the wave function to be not only continuous
but also continuously differentiable in that regime i.e. ex@ect no surprises with the basis func-
tions asi — oo. As the estimates fod andp are closer and closer to the true values of the
eigenparameters, the magnitude of the coefficigptsf eq. (15) become smaller and smaller as
1 — oo. In this limit, the basis set is a valid representation ofttiie wave function.

The first 10 coefficients of the series td{x) wherez = p? for £ = 0 are:

2 4 2 92
Alz) = 1 P ——ad - gt 4P 28
(z) P32+ e+ o0 ™ T To3e25° 37889775 © (28)
513988 ¢, 122264 ry 57430742 .
9050920003125 © " 11636897146875 ~ ' 62315584221515625
26237052532 5 1550889714543116 0

T 1566426840576238265625 ~  213229853673440433908203125

and our computer algebra programs allow us to generate mang such coefficients. The first
three non-vanishing terms of the Taylor series Agp?) have already been published for cases of
small p consistent with small internuclear distancRg38-40]. We now claim that the present
algorithm provides a means of generating the Taylor serfied m small z wherez = p?, the
result being valid a3 — oo and thusindependenbf the size of the truncated basis. Later, we
will demonstrate it to be independent of the actual choickasis. However, the first test concerns
numerical vindication.
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Table 2: Convergence of “Taylor series” df(p?)

Ground State:ls o,

(n=1,£=0,m=0)

ODKIL (accurate) series (20 terms
R p | A A
0 0 0 0
0.5 46569679 | .729927345e-1] .7299273577e-]|
1.0 || .851993637| .249946241 2499467374
1.5 || 1.18537488| .498858904 4988725127
12.0 || 1.48501462| .811729585 .8118596153
25 1.7622992 | 1.19023518 1.190951531
3.0 || 2.02460685| 1.64100244 1.643819599
4.0 || 2.52362419 2.79958876 2.822919217
5.0 || 3.00919486| 4.37769375 4.491055954
10.0 || 5.47986646| 20.1332932 25.05609231
20.0 || 10.4882244| 90.0528912 -1147.477000

Table 3: Convergence of “Taylor series” df(p?)

State: 2s Oy

(n=2,£=0,m=0)

ODKIL (accurate) series (20 terms)
R p | A A
0 0 0 0
0.5 || 0.241110452 0.194282436e-1 0.1942824361e-1
1.0 || 0.459850296| 0.711543142e-1 0.7115431427e-1
2.0 || 0.849546791] 0.248466171 0.2484661714
3.0|| 1.19791141| 0.510154273 0.5101542740
4.0 || 1.51924947 0.8535318 0.8535318053
5.0 1.82176362 1.28400188 1.284001886
10 || 3.19930169| 5.12935962 5.127249696
15 451129751 12.4337232 -17315.20146

3.4 Numerical vindication of the Series forA (p?)

To vindicate the series, we obtain data entrief2pp and A from program ODKIL and inject the
data entries op into the series solutions fod. We then compare the latter with the valueAf
obtained from ODKIL for a given state. This is done for thelgrd state and a few excited states as
shown in the following tables. The results for the groundeste. 1s o, (n=1,£=0,m=0) are
shown in table 2 and those of st&tes,, (n = 2,£ = 0, m = 0) are shown in table 3 demonstrating
that the same series df for a given/ works for more than one state. The results for the excited
state2p o, (n = 2,£ = 1, m = 0) vindicate the series solution fér= 1. The results for statéd o,

(n = 3,£=2,m = 0) vindicate the series solution fat for £ = 2.

In all cases, we can see that the series obtained fpf) works indeed like a Taylor series, work-
ing very well for smallp. Beyond a certain value aR, the series solution rapidly degenerates.
Nonetheless, e.g. for the ground state, the series solwiioks well near the bond length (around

R = 2 which is underlined) and beyond. Degradation of the segesimes apparent & = 5.

The question arises as to whether or not the series coeffiaéu (p?) follow a pattern. We have
found none so far. The pattern of the changing sigis- is not one of alternating series and thus
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Table 4: Convergence of “Taylor series” df(p?)

State:2po, (n=2,£=1,m=0)

ODKIL (accurate) series (20 terms
R p | A A
0 0 -2 -2
0.5 .254186316| -1.96120498 -1.961204981
1.0|| .53141962 | -1.83001042] -1.830010419
2.0 1.15545177| -1.18688939| -1.186889387
4.0 || 2.35889913| 1.53846448| 1.538464473
6.0 || 3.43970785| 5.92793017| 5.927930398
8.0 || 4.4671459| 12.0646853| 12.07439611
9.0 || 4.97308004| 15.8356448| 16.60977070
10 5.476774 | 20.0920989| 58.89905749
20 || 10.4882239| 90.0528776| .7649129703e13

Table 5: Convergence of “Taylor series” df(p?)

State:3do, (n=3,{=2,m=0)
ODKIL (accurate) series (20 terms

R p | A A

0 - -6 -6.
0.5 0.166934253 -5.98541087| -5.985410869
1.0 || 0.335547827| -5.94115241| -5.941152409
2.0 || 0.686698811 -5.75530105| -5.755301048
40| 1.51188304| -4.86085811| -4.860858108
6.0 || 2.37168861| -3.43229937| -3.432299419
8.0 || 3.09069127| -2.07684281| -2.076688125
10 || 3.69538523| -0.874720469 2.071237971
20 || 6.12806789| 7.31365225| 5232651466.

this function is unlike all the special functions known ir tliterature (such as e.g. [41]).

Nonetheless, there is something of a pattern for a giveasaitien modifying the quantum number
£, term by term. The first two terms anda; follow a pattern in/ according to e.g. (23) for even
£. No such simple pattern exists for the next tergn However, if one solves fai, in terms ofag
anda, for a high value o, say/ = /,,,,, one obtains a polynomial formula fap. If one then
substitutes the general formulaedirior ay anda, into this polynomial expression far,: it will
correctly generate the coefficierds not only for£,,,, but forallZ = 0,1,2...4,,4,. At SOMe
point, the resulting formula will break down for a valuefo ¢,,,,.. This “triangular” relationship,

- useful because one often does calculations within for @duhrange o - indicates that:

em“”c—)oo Qemaac (Z)

~
~

a2 )

which places us beyond eq. (23) (or (25)) which determinanda; only. However, this is subject
of further exploration elsewhere.

The range of the series solution can be considerably imgrbyanodifying the recurrence relation
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for det(Fe) like so:

det(Fep) = 1 (29)

det(Fe)) = % —A (30)
8k2—1+4k

det(Fexy1) = (—2k (2k+1)+ ?4(13 ) (4Z+ 3)) — A) det(Fex) (32)

zy(2k —1)% k2
T ah o) @k 3 (kg 1)det(fe’“*1)

where it is understood = y = p? but it is onlyz which is treated as a perturbation. This is simply
a different representation denoted = A(z,y) but which represents the same functidiip?).
Modifying slightly our previous algorithm, we obtain e.g.nmedified series solution foA(z, y)
for£=0:

2 2
A:g_g_y:ﬁ 14 y" Piy) z (32)
3 15 (2y—63) 375 (2y — 63)3(2y — 231)
28 3p 3
y° P3(y) © o

121875 (2y — 63)5 (2y — 231)2(2y — 495)
where the polynomial®(y) of orderk are given by:

Pi(y) = 94y —44121
Py(y) = 166376y + 16398492y + 131745081006y — 13685763372435

Note that if we injecty = z into the above and make a Taylor series expansian, we simply
recover the series solution in= p? obtained in eq. (27) fof = 0. Since the radius of convergence
is determined by the closest singularity or branch poinhandomplex plane, we have

2y —63=(2p> — 63)=0=p~ 56

We note that the sequence of numbers 63, 231, 495, 855, chwappear in the denominator have
a pattern which can be found using tipiein package [45]. This demonstrates that these numbers
fit a holonomic function and it is found that these fit the patte

3(45+3)(45+7) (33)

We recognize it as one of the terms which appear in the remurstlations fordet(Fey)

i.e. (4k — 1)(4k + 3) with £ = j + 1. However, no pattern has (so far) been found for the
polynomialsPy(y). Nonetheless, our computer algebra routines allow us tergémthis series to
relatively high order.

Next, the sum can be calculated using non-linear transfiimmsaknown as the Levin or Sidi trans-
formations. The latter involves a series transformatiomhich one can accelerate the convergence
of a series and even sum divergent series (e.g. see the wptR,d#]). We take the point of view
that a Taylor or asymptotic series has all the desired “mfdion”, getting numbers from the series
is a matter of a summation technique. These transformationavailable in the Maple system as
NonlinearTransformations

The best results for the ground state are obtained by agpli8idid transformation inc com-
pounded withy as shown in table 6. Even when the modified series behaveg Haglresult from

the Sidid transformation provides reliable numbers. The results lnpl remarkably well all the
way up toR = 10 and beyond. Beyon& = 10, the asymptotic series expansions as e.g. listed by
Cizeket al.[9] are more useful. What is important in our case, is thatsauies solution works so
well around the bond length and the intermediate regime.
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Table 6: Convergence of Series A(X,y)

Ground State Revisitedts Oy

(n=1,£=0,m=0)

A

series (12 terms) | ODKIL (accurate)|

Sidi-d

0.24994624090
0.81172958404
1.6410024366
2.7995666114
3.9638237398
-4.6313683166e+03
-3.7137673759e+12
-1.5608159299¢e+33
1.0054600411e+15

el
U.,oooovmboon\u—\:u

0.2499462409
0.8117295840
1.6410024369
2.7995887586
4.3776938960
6.4536051398
12.2262006172
20.1339450995
48.8656127918

0.2499462410
0.8117295850
1.6410024370
2.7995887590
4.3776937530
6.4536037430
12.2261746150
20.133293178(
48.822353529(

3.5 Solution for A(R, p)

Although we have eliminated one of the unknowns i.e. four{@?) such that the determinantal
conditions fordet(F;) are satisfied, there is still the remaining determirdt{);) to address. The
recurrence relations fatet();) of eq. (18) depend on the internuclear distafitand have more
structure than those alet(Fe;) of eq. (19) ordet(Fo;) of eq. (20). Nonetheless, we proceed in
parallel to what we did ford (p?).

To start with, we ignore the termlet();_1) and solve the resulting two-term recurrence relation
since all linear recurrence relations of this type are doévan terms of the roots of the characteristic
polynomial obtained by assuminglat();) = f* and then solving foy:

p D(2kp+Yy + X/2p)) T((2kp+ Y, — X)/(2p))

det(Vi) = (-2) T(—(Y_ — X)/(2p)) T(—(Y_ + X)/(2p)) 4
where
X = V2p*—p>+R2+2Ap?
Y, = 2p°+p-R
Y. = 2p° —p+R

andr is the Gamma function [41]. This result bears some reseroblaiith the outcome of solving
the eigenvalue problem for the hydrogen atom. In this cadetisns to the ODE for the radial
equation in the radiug can be expressed in terms of hypergeometric functions. hfajcthe
asymptotic solution at — oo with the regular solution at — 0 necessitates the elimination of
the irregular solution by forcing one of its coefficients s@lexpressed in terms of the Gamma
function - to be zero (e.g. see [42]). In our case (as in the o&the hydrogen atom), it is a matter
of ensuring that the arguments for one (or both) of the Gamumetions in the denominator of the
expression above to bey wherej = 0,1,2... Thus, solving forA, we find that:

R(1+2))

A(R,p)zp2+2(1+2.])p+1—2R+2_]+232—T. (35)

What remains is the identification ¢f Next we treat termdet (), 1) as a perturbation formally by
multiplying it by A with the understanding th&h = 1). Forj = 0, the series solution faA (R, p)
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Table 7: Convergence oA(R, p)
Ground Statelso, (n=1,{=0,m =0)

ODKIL (accurate) series (4 terms)
R p | A A

0.5| 0.46569679| 0.729927345e-1 0.7299778055e-1
1.0 || 0.851993637| 0.249946241 0.2499480309
2.0|| 1.48501462| 0.811729585 0.8117297560
5.0 || 3.00919486| 4.37769375 4.377693772
10 || 5.47986646| 20.1332932 20.13329314
20 || 10.4882244| 90.0528912 90.05289034
30 || 15.4919739| 210.034597 210.0345960
40 || 20.4939187| 380.025707 380.0257060
50 | 25.4951064| 600.020452 600.0204512

2
(p — R)? Py(R,p)\?
8p(2p+2p?-R)?(3p+2p*—R))
(p — R)? Pip(R,p) N3
(16 p (2p +2p% — R)5 (3p + 2p? — R)? (4p + 2p? — R))

(36)

where

Py(R,p) = 14p*+ (13-12R)p> + R(2R—17)p?> + 7pR%? - R?
Py(R,p) = 584p'% — 8(116 R —233)p° + 2 (256 R? 4 969 — 1878 R) p°
—4(28R® — 722 R? + 1184 R — 165) p’
+ R (8 R® 4+ 4678 R — 1056 R? — 1897) p°
+2R? (92R? — 1200 R + 1145) p°
— R (12R* — 678 R+ 1513) p* — 2R*(50 R — 297) p?
+ R (6R—139)p? + 18R%p — R’

The series looks complicated and the presence of sindetagdt every—R +ip + 2 p?> = 0
fori = 2,3,... already tell us that this function is unlike most specialdiions in the literature.
However, the series gives very good results as shown in Tabi¢h only 4 terms. It does not need
any convergence acceleration summation methods at fargée results of Table 8 for stads o,

(n = 2,£ = 0,m = 0) show us thatd(R, p) works well for largeR but diverges for smalR.
Also shown in the table are the results of the Sidransformation which considerably improves
the series solution for smaR.

What remains is to identify the meaning of the numperBy checking the solution for excited
states, we find out empirically that:

j=n—4£ -1 (37)

wheren is the united atom quantum number. This numjdsra valid quantum number for thsep-
aratedatom limit [8, eq.24,p.666]. Thus, just as we match the oudveand inward radial solutions
for the radial ODE for the hydrogen atom by which to deternthreigenvalue, the eigensolution
for HJ results from matchingl(p?) governed by the united atom quantum numbesth A(R, p)
governed by the separated atom quantum numben — £ — 1.
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Table 8: Convergence oA(R, p

State:2sa, (n=2,£=0,m=0)
ODKIL (accurate) series (5 terms) Sidi-d

R p | A | A A

0 0 0 - -
0.5 0.241110452 | 0.0194282436| -7.5860659805e+02 0.0211395500
1.0|| 0.459850296 | 0.0711543142| -2.1405738045 0.0718499907
2.0|| 0.849546791 | 0.2484661710| 0.23871213039 0.2485999772
3.0 1.197911410 | 0.5101542730 0.50971077859 0.5101743643
40| 1.519249470 | 0.853531800 0.85348392428 0.8535343888
5.0|| 1.821763620 | 1.28400188 1.2839939077 1.2840020996
10. || 3.199301690 | 5.12935962 5.1293596329 5.1293596444
15. 4511297510 12.4337232 12.433723259 12.4337232589
20. 5.805158110 23.1467952 23.146795143 23.1467951431]
30. 8.359177000 54,1918175 54.191817437 54.1918174372
40. || 10.8899708000 97.83692290 97.836923003 97.8369230031]

As suggested by Table 8 the series behaves well for jargés found thatA(R, p) yields a stable
series in powers of /p. To within O(1/p"), the expansion for (36) is:

A(Rap) =

_I_

4R+1) (2R+1) (16R?>+40R+23)
12 -2R— ( -
(p+1)° 2R ip T ap 64 p°
(32R*+68R+41) (64R® 4576 R* + 1108 R + 681)
64 p* 512 p5
(256 R3 + 1432 R% + 2566 R + 1593)
512 pb
(1280 R* + 28160 R? + 123680 R? + 210448 R + 131707)
16384 p7
(8192 R* + 95040 R? + 358368 R? + 587512 R + 371061)
16384 p8
(7168 R® + 313600 R* + 2607232 R? + 8854496 R? + 14149364 R + 9039151)
131072 p?
(65536 R5 + 1366016 R* + 9200576 R> + 29011472 R?45621790 R + 29559559)
131072p10

(38)

The coefficients up t@(p ) have been previously published [40] but our computer aky@loo-
grams allow us to go much further.

3.6 Other Bases - Algebraic Vindication

Although our previous results are apparently independgtiteosize of the chosen basis, we must
consider other bases. For theoordinate, we consider the Baber-Hassé and the Wilsaslj24d]
which are described as follows.

Baber-Hasseé:

M(n,¢) = e™Pe”™ Y " ay P{"(n)

{=m

(39)
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The recurrence relation is given by:

(L+m+1)

(2¢ + 3) [2p(€ + 1) + O1lags: + o (k)ag + (¢ —m)

20— 1)

(Q1 —2pl)ag1 =0  (40)

where form = 0:

ar(k) = A —p° + LL+1)

a1 = 0.
Wilson:
M(n,¢) = e™Pe(1 =)™ Y " (=1)F ¢, (1= p)* (41)
k=0

The recurrence relation is:

2k+1)(k+m+1)cgy1 +o1(k) g +2[Q1 + p(k+m)cp1=0 (42)
where

o) = A—p> + (m+1)(m+2p)+ k(k+2m+4p + 1)

cC-1 = 0.

Both of these bases have been implemented into the Maplensysif we conside? = 0, the
coefficientay of Baber-Hassé basis is of ordéx(1/p?) and the coefficient, of Wilson basis
is of orderO(p®). However, if we inject our series solution fek(p?) into the series coefficients
of both bases, we find that bothy andcy areformally zero to within ordeiO(p” ). This can be
seen through a number of computer algebra demonstratidns dur series solution fot(p?) also
formally satisfies the recurrence relations of these other basdes, by orderin p.

For the¢ coordinate, apart from the used Hylleraas basis, thersdstht Jaffé basis.

Jaffe
O (%)k @3)
The recurrence relation is: )
(k+1) (k+m+1) Desr +7(k) De + (k — %)(k +m— %)Dk_1 (44)
where
nk) = AP~ (mt) (24150
— 2% (k+m+2p+1—§—;)

D, = 0.

Similarly, it can be algebraically demonstrated that e.gt jf= n — £ — 1 = 0, the 1/p series
expansion ofA(R, p) formally satisfies the coefficients of the Jaffé basis fayatiwe powers op
just as they satisfy the Hylleraas basis. This demonsitratilows us to consider another basis of
importance for the) coordinate, namely the Power basis:
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Power

M(n,¢) = &™e” 90D (1 — )™ N " dp M(=(k + 6k),m + 1,2p(1 +1n))  (45)

k=0
The recurrence relation is:

(k+dk+1) (k+5k+1—%) dyy1+ x1(k) dy (46)

Q1
+ (k + 0k +m)(k + 6k + m — %) di 1
where
2 Q1
xi(k) = A—-p°—Q1 + (m+1) (Zp—l—l-%)
— 2(k+ k) (k+6k+m+1—2p— %)

dy = 0,

anddk is an exponentially vanishing term i and consequently we do not make the same demon-
stration as for the Wilson and Baber-Hassé bases. Howetien we letR — oo thendk — 0 and
we can make a similar demonstration as for the Jaffé basig tlse1/p expansion ofA(R, p).

Granted, we have not proven this falt bases. Nonetheless, we emphasize that e.g. the Wilson
basis is very different from the Baber-Hassé basis or theeP®asis and the basis of spherical
harmonics we used as a starting point for this analysis. bMa@ne the Hylleraas basis is also very
different from the Jaffé basis. These demonstrationsiglyosuggest basis independent results for
A(p?) and A(R, p).

This analysis herein exploits the fundamental theorem gélahk i.e. that if one knows all the
N roots of a given polynomial safx (z), the latter is completely defined within a scaling factor
namely the coefficient of its highest powerin The three-term recurrence relations of egs. (19),
(20) and (18) have a linear dependenceAdior the term ind;, butno dependence of for the third
term indy_;. Thus,det(Fe;), det(Fo;) anddet();) arei** degree polynomials it regardless

of whether or not the third term id,_; is neglected. This allows us to completely account and
identify the the eigenparameters of the matrigeand) for every discrete state.

3.7 Mathematical Classification of Solutions

So far, we have identified the functions implied by the deteamtsdet(F;) anddet();), namely
A(p?) and A(R, p) respectively forall discrete states wheme = 0 for the homonuclear case.
In view of previous and recent work on tti¢ — 1 version of I—g and the findings in this work
concerning theD = 3 version of H, we are now equipped with the means to make the following
analytical comparison. Here, we can put the— 1 and theD = 3 versions of H on the same
“canonical” footing:

D — 1: To reiterate the results of section 2, the energy eigemvalgeverned by an equation of
the form:
d2
exp(—2 Rd) = PQ(d){PN(d)} where FE = —E (47)

When the second order polynomiB}(d) factors into a product of first order polynomials,
both sides of eq. (47) factors and the solution dois a (standard) Lambe##’ function
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[19, 20]. When it does not factor, the solution is a geneatilin of theW function reported
in the work of [28]. When the right side is a polynomial, théusion is ageneralized_ambert
W function [30]. The subscripPy (d) reminds us that our generalization for ##&function
can accommodate a polynomial with rational coefficientsrbiteary degree on the right side
of eq. (47).

The exponential term on the left side is a reflection of the¢ flat outside the Dirac delta
function wells, the basis of the particle is a combinationfrek particle solutions which
required matching at the Dirac delta function peaks.

D=3: To summarize the results of the past few sections, the eiganmeterp, which plays an
analogous role to the parametérof the D — 1 version of H is determined from the
equation:

2

A(R,p) = A(pQ){pN(p)} where F = -2 % (48)

The subscriptPy (p) reminds us that we have a Taylor series Aqp?) with rational coeffi-
cients which exactly matches the generalized right-hade fsirm of eq. (47). However, the
left-side of (48) looks very different than the left side df7§; it is the function implied by
det();) and is associated with the separated quantum numben — ¢ — 1. Nonetheless,
like exp(—2Rd), this function is well-defined asymptotically for large The right side of
eq. (48) is implied fromlet(F;) for even or odd which is a united atom quantum number.

So far, the functionsA(R, p) and A(p?) appear in the literature as expansions in terms6f
andp® respectively, restricted to = 6 and for specific cases of large and small values of
R [38—-40]. We can obtain series representations of both tochrgreater extent in view of
our computer algebra implementations. We have also seemtpd) can be represented as
an infinite series i wherez = p? and is consequently polynomial-like.

Note that ifm # 0, the governing equation has the same form as eq. (48) buethside
is more complicated and more difficult to get, as the deteantidet();) is no longer gov-
erned by a simple recurrence relation. However, in priegijglg. (48) governs the entire
homonuclear case.

Mathematically, in both cases, the right side of the goveyrequation is expressed in terms of
only one of the eigenparameters whereas the left side ejthie parameter and the value of the
internuclear distanc®& which is determined on input.

We therefore come to the conclusion that the eigenparampetide its D — 1 counterpartd, is
also determined by a special function which isimaplicit function, an even greater generalization
of the Lambert W function. So far, the functiod$ R, p) and A(p?) do not appear in the literature.
However, we can obtain series representations of both textant of getting reliable numbers, as
demonstrated by our tables of values.

On the subject of implicit functions or implicit equatiortbese are seen in a number of specific
contexts:

Retardation Effects: Equations of forme=¢* = P,(\) and more generally=* = P»(\)/Q1(\)
express the solutions of a huge classiefayeddifferential equations [46, eq.(3)].

Bondi's K-calculus: It is well known in the area of special relativity that the katz transfor-
mation can be derived from the theory of implicit functionghaminimal assumptions of
continuity [47]. Here one seeks the functigi) satisfyingf(f(t)) = k?t and the require-
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ments that it be monotone increasing and continuous. Thyarsolution is:

f(f(t) =k’t where v/c=k —1/k2 — f(t)=kt

GRT/QFT: As we mentioned before, the Lambert W function and its gdizataon appear in
General Relativity as solutions to respectively the twdypand three-body linear + 1)
gravity problems via dilaton theory [28, 29].

Implicit functions often appear in problems with retardateffects, relativistic or otherwise. Thus,
with some reservations, we associate with this mathenatdegory a tentative “physical picture”:

Although the hydrogen molecular ionjHn the context of the Schridinger wave equatiomds

a relativistic formulation, the eigensolutions we obtaonetheless suggests something akin to a
retardation or delay effect. This is not the case for a one center problem like g$trdgen atom
but this characteristic appears for a two-center probleowéver, this statement must be tempered
with the fact that e.g. the Lambert W function also appeammamy other types of problems with
no relationship to retardation effects.

4 Summary/Conclusions

Through experimental Mathematics using computer algebeataol, we have identified the math-
ematicalstructuresgoverning the energy spectrum of the hydrogen moleculaHiprior the two-
center one-electron problem.

In the present work, we started with a particular choice alidband expressed the determinantal
conditions by which the eigenparametgrand A are obtained. From one of the two determinants,
we inverted the problem to obtain a series representatitiveafeparation constadfp?) associated
with the united atom quantum numb&iWe applied a similar approach to obtadfR, p) from the
remaining determinant and associated with the separated giiantum number = n — £ — 1.
wheren is a united quantum number. We then demonstrated that tbksr@gere independent of
the size and even the choice of basis.

The eigenparameter for which E = —2p%/R? is obtained by matchingl(p?) = A(R,p) and
found to be the solution of an implicit function, with feadgrsimilar to that of the Lambert W func-
tion andits recent generalizations [30]. This allowed us to matherally categorize the eigenval-
ues (or rather make us realize what they are not) and evesaciate a tentative “physical picture”
to the solutions. While we made no pretense at rigor, thetisok were nonetheless vindicated
numerically and by algebraic demonstrations with compalkgebra.

The results express analytical solutions for the grountt stad the countable infinity of discrete
states of H for the homonuclear case when the magnetic quantum number 0. From the
discussion below eq. (48), we anticipate that the eigetisoli for m # 0 for the homonuclear
case to be qualitatively similar though admittedly this aéms to be proven. We emphasize that
although the basis and approach used here were ideat fer 0 and the homonuclear case. the
computer algebra methods shown are directly applicatetiadéeteronuclear case with # 0.
Form # 0, one should work directly from the recurrence relationshaef thosen basis now that
we understand how these basis coefficients behave withr lzattbbetter accuracy for the series
expansions ofi(p?) in p and the asymptotic series expansionsA9QR, p) in 1/p.

However, we make no pronouncements concerning the natunatbematical category of the solu-
tions for the heteronuclear case or when the nuclei are aldvmove. We note that fem = 0, the
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matrix fordet();) remains tridiagonal while the band matrix st (F;) is pentadiagonal and con-
sequently governed by nested recurrence relations [15jestigg that the analysis shown herein is
possible.

A number of issues arise from this result. In a sense, thdtriesooth overdue and premature. It
is overdue because of our present capacity to find solutmfairtsized molecules using computa-
tional chemistry. On the other hand, it is premature. Thetions we foundA(p?) and A(R, p)
do not seem to resemble anything we have seen in the literaflihe apparent singularities or
“resonances” a2p? = 3 (45 + 3)(45 + 7) for A(p?) andR = (j + 2)p + 2 p? for A(R,p) for

j = 0,1,2,... do not constitute a problem since the eigenparametensd A for a givenR are
never found on these resonances. Once a valdgisfinjected intoA(p?) = A(R, p), solving for

p numerically did not create any problems in the test casemimea so far. At any rate, the tables
shown herein merely illustrate the convergence propediigse functionsA(p?) and A(R, p) we
have identified: solving the coupled set of polynomidds(F;) anddet();) for p and A at a given
distanceR involves no resonances and is still the most useful methad & computational point
of view. In principle, the latter can go further than any FGEN program.

We have ordered series representations to relatively higaraf both of these functiond (p?)
and A(R,p) and we can generate reliable numbers for a number of disquetetum states. We
have also demonstrated that we could use these series bthaindadius of convergence using
techniques for handling divergent series.

From here, one could explore and seek alternate repreismstatl these functions with better con-
vergence properties especially at Idwvfor A(R,p) and largeR for A(p?) but the results from
the Sidi transformations are already very promising. At eatg, the hydrogen molecular ion for
clamped nuclei can be entirely contained within simple cotapalgebra sessions, not much more
complicated than those of the hydrogen atom

The exploratory and roundabout way by which we found ourtgmis, suggests there is something
missing in the mathematical physics or the methods for nistgithe eigenvalues of the Schrodinger
wave equation. There is hardly any existing “technology”dolving qguantum chemistry problems
involving implicit functions. Our use of a basis is certgindalid to demonstrate or prove a re-
sult. Furthermore, the convergence of the bases used hefgeba confirmed by determining the
asymptotic behavior of the expansion coefficients of theeftawtions for the various basis sets
considered [40]. Nonetheless, a more direct way of gemgydltie functions ofd(p?) and A(R, p)
would be instructive.
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Energy vs. R for Hy (a.u.)
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